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SECTION ONE 

THE DISCRETE THEORY 

THERE IS a widespread belief - most forcefully articulated by Norbert Wiener 
[:I9481 - that we are undergoing a new scientific revolution, one comparable 
in scope and scientific significance to that of the last century; but where 
the dominant concepts in the previous development were energy, power, 
and efficiency, the central notions are now information, communication, 
and feedback. Many current problems stem from attempts to transmit 
information and to exercise effective control rather than to achieve an 
efficient use of energy; little more than chaos would result, for example, were 
the design of a high-speed computer approached from the energy standpoint. 
L 6 Information is information, not matter or energy. No materialism which 
does not admit this can survive at  the present day." (Wiener [1948], p. 155). 

What then is information? How is it measured? What scientific state- 
ments can be made using the term? 

Several schools of thought have developed, each formulating and 
restricting these questions in its own way and offering answers to the 
resulting and more specific questions. In this essay I shall examine the 
formulation and the answers of one of these schools and describe some of the 
impact it has had for certain problems of psychology.(**) But before we 
turn to this, a certain amount of background material on the history, 
orientation, and relation of information theory to other theories is appro- 
priate. 

(*) Most often the title "information theory" is used without the prefix "selective"; 
however, some feel that the simpler title is misleading, especially since there exists a theory 
of structural information and one of semantic information. Indeed, Bar-Hillel [I9551 feels 
the title should be the "theory of signal transmission" for, as he argues, the seductive word 
"information" has led to considerable confusion; however, it is probably now too late to 
make such a crucial psychological change. 

(t) I wish to express my appreciation to Professors .4. H. Hastorf, Mr. E. Hick, B. Man- 
delbrot, F. Mosteller, H. Quastler, and H. Raiffa for reading and commenting on the original 
version of this essay. Many of their suggestions have been incorporated into the present 
version. 

(**) A number of summaries of this theory have been given: Gabor [1953b], Hockett 
[1953], McMillan [1954], Miller [1953], Osgood [1954], Slepian [I9541 and Weaver [1952]. 
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It  is clear that if Wiener and others are correct in their views, the 
intuitive concept "information" must be given at least one precise meaning 
and maybe more. Considering the variety and vagueness of its meanings in 
everyday usage, it is a priori certain that objections will be raised against 
any particular formulation, which will surely ignore some of these meanings. 
This problem - if it be such - has been met many times in science; we 
need only think of words and concepts such as force, energy, work, etc. 
I t  is doubtful that a formal definition ever stands or falls because of such 
debates; it is rather the power and depth of the resulting theory that 
determines its ultimate fate. 

Within the last two decades two distinct attempts have been made to 
deal with the notion of information, one in Europe, and one in America; 
these have been complementary rather than competitive. Both theories 
seem to have arisen from much the same class of applied problems : commu- 
nication involving electrical signals. The European school, in which the 
names of Cherry, Gabor, and MacKay are the most important, has been 
concerned with the problem of the information contained in a representa- 
tion of a physical situation. As seems intuitively reasonable, the concepts 
of size and dimensionality are important here. In America, because of 
work by Wiener and Shannon, a theory of information transmission has 
been developed in which the dominant concepts are selection, statistical 
possibilities, and noise. 

In this essay I shall not undertake an examination of the notions of 
structural and metrical information (the European school). This theory 
has had, so far as I can determine, almost no effect on behavioral applica- 
tions. Of interest to the behavioral scientist, however, is the apparently 
overlooked fact that one basic concept of structural information theory is 
identical with the central assumption of factor analysis. Both theories are 
concerned with the number of independent dimensions that are required 
to represent a certain class of data, and the geometrical model of any 
particular situation is as a point in an Euclidean n-space. If this observation 
is correct, it is interesting that basically the same concept has been inde- 
pendently arrived at by both physicists and psychologists, and it may be 
unfortunate that each is unaware of the work of the other. 

There are, of course, marked differences of emphasis which reflect the 
different origins and problems. For example, the European information 
theorists have examined the basic natural units in which the several dimen- 
sions can be scaled. Whether this theory of metrical information, as it is 
called, is related to any of the scaling work in the behavioral sciences is not 
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immediately obvious and appears not to have been investigated. There is at 
least a superficial parallel to psychophysical scaling based upon imperfect 
discrimination. On the other hand, factor analysts have developed an 
elaborate matrix machinery suited to determining the approximate dimen- 
sionality of the Euclidean space representation of certain types of data. 
A comparable machinery does not appear to exist in structural information 
theory, though, of course, the close relation of the structural model to matrix 
theory is apparent. 

Our concern, however, is with selective information theory. The central 
observation of this theory is that for a great many purposes - in particular, 
in the design of communication equipment - one is never concerned with 
the particular message that is sent but rather with the class of all messages 
that might have been sent and with the probability of the occurrence of 
each. "We are scarcely ever interested in the performance of a communi- 
cation-engineering machine for a single input. To function adequately it 
must give a satisfactory performance for a whole class of inputs, and this 
means a statistically satisfactory performance for the class of inputs which 
it is statistically expected to receive." (Wiener [1948], p. 55) From this 
point of view, information is transmitted by a selection from certain alter- 
natives. The contention is that selection of an a priori rare event conveys 
more information to the receiver than does the selection of one that is more 
probable. This use of "information" obviously ignores all questions of 
meaning. "It is important to emphasize, at the start, that we are not con- 
cerned with the meaning or the truth of messages; semantics lies outside 
the scope of mathematical information theory." (*) (Cherry [195 11, p. 383) 
The failures to adhere to this position, and the consequent difficulties, are 
discussed in detail by Bar-Hillel [1955]; they have led to considerable 
confusion and not a little empty debate. 

I t  may be useful to introduce at this point three common-sense obser- 
vations which will be given precise meanings in the presentation of the 
theory of selective information - precise to the point where numbers can 
be attached to them. 

1. A person communicating over a noisy telephone line can get less 
c c across" in a given period of time than he can over a perfectly clear line. 

(*) Carnap and Bar-Hillel [I9521 and Bar-Hillel and Carnap [1953] have presented a 
theory of semantic information which is based on Carnap's work in inductive logic. Since 
their approach is different from that of selective information theory, and since, as far as 
I know, there have been no behavioral applications of it, I have elected not to summarize 
it here. It may, however, become important, and should therefore not be neglected by the 
serious student of this area. Also, see Hockett [1952]. 
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2. Not every letter,(*) nor indeed every word, of a message in any 
natural language is as important as every other one in getting the sense of 
the message. For example, the missing letter in "q-iet" or the missing word 
in "many happy of the day" can be filled in, with a high probabil- 
ity of being correct, by anyone knowing English, and therefore in the above 
context they do not carry much important information. 

3. Every person seems to have a limited capacity to assimilate informa- 
tion, and if it is presented to him too rapidly and without adequate rep- 
etition, this capacity will be exceeded and communication will break down. 

As they stand, it is not immediately obvious that these statements are 
not concerned with semantics, or, for that matter, that the whole problem 
of information transmission is not almost wholly semantic. One major 
contribution of selective information theory is in showing that much of what 
is implied or suggested in these examples and others like them can be given 
a precise and useful meaning by a purely statistical treatment. 

We shall delve into this more deeply in the following sections; but first, 
let me discuss briefly some of the origins of the theory and of the developing 
interest of behavioral scientists in it. ( 7 )  Electrical communication 
engineers gradually had been gaining experience in the handling and trans- 
mission of information since the early days of the telegraph, telephone, and 
radio, and during the 1920's this experience began to be formalized as a 
theory. One of the most important early papers was by Hartley [1928]; in 
it the logarithmic measure so characteristic of modern information theory 
was employed in a simple form and much of the terminology was introduced. 
The maturation of the theory, however, resulted from the work of two men : 
Norbert Wiener of M I T  and his former student C. E. Shannon of the Bell 
Telephone Laboratories. Shannon's papers of 1948 (reprinted in book form, 
Shannon and Weaver [1949]) are now the classic formulation of the theory. 

(*) Here, and elsewhere, I shall speak as if the letter is the carrier of information: there 
will be presented calculations of the number of "bits of information transmitted" per letter, 
etc. The linguist may quite properly raise objections to this usage, for presumably it is the 
spoken, not the written, language that determines the information bearing units. Much 
effort has been expended in recent years to isolate and to understand the natural unit of 
spoken language - the phoneme - and it is in terms of this unit that we probably should 
deal. For a survey of this work and an extensive list of references see Osgood [1954]. Yet, for 
reasons of convenience - both because letters are more familiar to me and to many readers 
and because many of the existing information theory calculations are in terms of letters 
(the exceptions being Cherry, Halle, and Jakobson 119531 and Black [1954]) - I shall 
ignore this basic proposition of modern linguistics. Of course, this is not intended as a scienti- 
fic position on the matter. 

(t) A much more complete history of both the American and European schools has 
been given by Cherry [195 1, 19531. 
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The more mathematically inclined reader will find McMillan's later [I9531 
presentation of the central theorems more satisfactory. Also, see the formu- 
lations of Feinstein [I9541 and Watanabe [1954]. 

The implications of the theory and of several related concepts - of 
which feedback(*) is one of the most important - were quickly recognized 
to extend beyond improved electrical communication. Shannon and Wiener 
realized this, and the latter in his book Cybernetics both outlined the extent 
of the new discipline and offered a generic title for its somewhat nebulous 
components. From 1941 on, these concepts and theories have been examined 
and debated in a series of conferences and seminars.(t) For the most part, 
these meetings have been held in the East, many of them in Cambridge, 
and as a consequence the impact of information theory, which has been so 
strong along the Eastern seaboard, has been less marked in the West. 

Many of the empirical sciences dealing with human behavior - psychol- 
ogy, linguistics, physiology, biology, psychophysics, social psychology, 
neurology, medicine, anthropology - have had representatives at these 
seminars; indeed, scientists from these fields have organized and dominated 
many of the meetings. From them emerged a small group of analytically 
inclined behavioral scientists who believe that information theory is, or can 
be, a useful tool in handling some problems in various disciplines. I shall 
try to indicate some of the uses, and the usefulness, of ihe theory in Part I1 
of this essay. 

Our material is organized into two parts. In  the first, I shall try to 
present a synopsis, which draws heavily upon one's everyday experience 
with communication systems, of the discrete theory of selective information. 
The presentation is most deeply influenced by Shannon's. I was strongly 

(*) "Feedback" has become such a familiar term that it is probably not necessary to 
define it, especially since it will not be a central notion in this survey. Still, a few suggestive 
words may do no harm. Many systems are designed, or behave as if they were designed, to 
respond to a certain class of inputs in such a manner as to achieve a particular goal. For 
example, an ideal amplifier attempts to reproduce the exact form of the input while chang- 
ing the amplitude scale. A device designed to do this will, because of variability of its com- 
ponents, etc., fail to respond perfectly, and the problem arises how to improve the perform- 
ance. One way is this: build into the system certain appropriate adjustable parameters, 
whose values are determined at any particular time so as to reduce the discrepancy between 
the desired output and the actual output. This is effected by feeding back a fraction of the 
output signal and comparing it with the input to determine the discrepancy. Under certain 
conditions, the resulting system will be stable and large errors will not occur. In  a more 
general context, feedback is taken to mean any messages a system receives informing it as 
to what its response has been, and usually this information is used to modify its behavior to 
reach a specified goal. 

(7)  In his introduction to Cybernetics, Wiener presents a detailed history of the early 
meetings. 
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tempted to depart from his organization completely and to formulate the 
theory along the lines of a multivariate statistical analysis, following 
McGill's work, for it is this aspect of information theory that seems most 
pertinent in behavioral science applications. However, such a course would 
have reduced the number of familiar signposts available, left much of the 
language of the theory unmotivated, and rendered some of the applications 
close to incomprehensible. With some regret, I have elected the well trodden 
path. In the second part I shall be concerned entirely with applications of 
the theory to problems in psychology. Again, two modes of organization 
are possible: either by the conventional categories used in psychology or by 
the structure of the theory. While the latter more strongly appeals to me, 
it tends not to seem appropriate to most psychologists - the substantive 
rather than the methodological boundaries are held sacred - so again I 
have conformed. I hope one day to see a monograph on the use of infor- 
mation theory in psychology which follows the two courses not used here. 

An appendix giving a short summary of Shannon's theory of continuous 
communication systems concludes the essay. While this theory is of great 
importance in electrical applications, it has so far been of minor significance 
for traditional problems of the behavioral sciences. However, it is inter- 
woven into certain new work; see Licklider [1960]. 

2. GENERAL CONCEPTS 

Communication Systems. Information transmission always occurs 
within a certain physical framework which may be termed a communication 
system. Basically such a system consists of three central parts: a source of 
messages, a channel over which the messages flow, and a destination for the 
messages. The source, which very often is a human being, generates messages 
(and so information, see below) by making a series of decisions among 
certain alternatives. I t  is the sequence of such decisions that we call a 
message in a discrete system. These messages are then sent over the channel, 
which is nothing more than an appropriate medium which establishes a 
connection having certain physical characteristics between the source and 
the destination. Mechanically, this picture is incomplete, since the decisions 
made by the source must be put into a form which is suitable for transmission 
over the channel, and the signals coming from the channel must be trans- 
formed at the destination into stimuli acceptable to it. Thus, between the 
source and the channel a transmitter is introduced to "match" the channel 
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to the source, and between the channel and the destination a receiver is 
introduced to "match" the channel to the destination. In  other words, the 
transmitter encodes the message for the channel and the receiver decodes 
it. A schematic diagram of the system is shown in Fig. 1. 

SOURCE CHANNEL RECEIVER DESTl NATION 

I t  is entirely possible to have transmitters which so encode messages 
that it is not possible to design a receiver which can completely recover the 
original message. For example, if one has a transmitter which encodes all 
affirmative statements such as "O.K.," "yes," "all right," etc. into the same 
signal, then no device can be built which will translate that signal back into 
the particular word chosen by the source. A transmitter having this property 
is called singular; otherwise it is called non-singular. (These terms arise if one 
thinks of the transmitter as a many-many transformation or as a one-to-one 
transformation.) When the transmitter is non-singular it is possible to design 
a receiver which will completely recover the original message. In  other 
words, there exists a receiver which is the inverse of the transmitter. Through- 
out our discussion we shall assume that the transmitter is non-singular and 
that the receiver is its inverse. In  effect, this means that we can ignore them 
in our discussion and suppose that the source and destination are both 
matched to the channel. 

Our abstract communication system seems fairly complete except that 
it does not allow for the possibility that more than one source may be using 
the same channel a t  the same time. Certainly this can happen. I t  occurs 
when, by mistake, one telephone line carries two conversations a t  once 
(crosstalk). I t  also happens in telephone or radio communication when there 
is static in addition to the desired message. In all such cases the messages 
from sources other than the one under consideration - which will simply 
be called the source - cause interference with messages from the source. 
Such interference may be minor and have no effect on the intelligibility of 
the message, as for example in the usual low-level telephone static, or it may 
be most destructive, as when another conversation is cut in. Another 
example which one might tend to put into the same category of interferences 
is the 60-cycle hum which is common to so many cheap radios. If the hum 
level is high enough it certainly can lower the intelligibility of speech. 
However, there is an important difference between the problem of inter- 
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ference from hum and from that due to static or to other conversations. The 
former is completely predictable and it is possible from a short sample to 
determine its exact frequency, phase, and amplitude. Thus, if there is hum, 
one can build into the transmitter or into the receiver a network to subtract 
it from the resulting signal, leaving only the message. Static, hiss, and 
crosstalk cannot be predicted in detail from any amount of past evidence 
about them. Therefore, once they enter the channel, they cannot be char- 
acterized in full and subtracted from the signal, but rather they must be 
accepted and compensated for in other ways. 

Thus in our abstraction we must conceive a second source (which in 
fact may be several lumped together) also feeding signals into the channel. 
I t  has the property that (for the problem under consideration) neither the 
source nor the destination can predict in detail the messages that will 
emanate from it. The source or the destination may have or may obtain 
statistical data about the nature of this second source. For example, in an 
electrical communication system the average power of the second signal 
may be measured. Such a source is known as a noise source and the signal it 
generates will be called noise. Clearly, these are often relative terms and what 
in one context is noise may be the message in another. This, then, completes 
our model of a communication system, and it is shown schematically in Fig. 2. 

SOURCE CHANNEL RECEIVER DESTINATION 
A 

SOURCE 

FIG. 2. 

When there is a noise source in a system it is conventional to speak of 
the channel as being noisy, but it is well to keep in mind that this is merely 
an abbreviated, and slightly misleading, way of speaking. The noise signal 
is not an  invariant of the channel, as are its physical characteristics. I t  is 
clear that one can change the amount of noise in a system while keeping 
the physical characteristics of the channel, the source, and the destination 
the same. In  any given problem under consideration, the noise level will 
presumably remain constant and so it can be thought of as a property of 
the channel, but as we shall see i t  is a property which must be handled very 
differently, in the theory, from the physical characteristics of the channel. 

Noiseless Systems. In one sense, no communication system is ever noise- 
less; there is always some noise signal. For example, in any electrical system 
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there must always be signals resulting from the random agitation of mole- 
cules - thermal noise. This can be a serious problem in a high-gain 
amplifier, but it is not in a telegraph. The point, of course, is that noise is 
not, in and of itself, bad, but only when it causes a significant interference 
in the messages sent by the source. The only pertinent feature of noise is 
whether it ever causes the destination to infer that a different message was 
sent from the one actually sent. Thus, if the noise level is low compared 
with the signal level, so low that it does not significantly alter the message 
as it passes along the channel, then it may be completely disregarded and 
the system can be treated as if there were no noise present. 

Since it is assumed that by definition the effect of noise is unpredictable 
in advance (except statistically), all we shall be able to state about the effect 
of noise on messages - and all we need to state - is the probability that 
it changes one signal into another. If the signals sent (in a given situation) 
are always received correctly, then we say the system (or the channel) is 
noiseless. I t  must always be kept in mind that if we change the level at which 
the transmitter operates, or the level of the noise signal, we may change a 
noiseless system into a noisy one. Being noiseless is a property of the whole 
system and not of the channel alone! 

In  principle, it is not necessary to deal separately with the theory of 
the noiseless and noisy cases, for the former is but a special case of the 
latter. The presentation, however, is simpler if we bring in the complications 
one a t  a time, so we shall examine the noiseless case first (Chapter 3) and 
then the noisy one (Chapter 4). 

The Bit - a Unit of Information Transmitted. T o  carry out the pro- 
gram mentioned in the Introduction, namely, to make precise and measur- 
able some features of the transmission of information, it is necessary to 
introduce a unit in terms of which amounts of information transmitted may 
be measured. The central observation which is needed before one can arrive 
at an appropriate unit is that a message conveys information in the sense 
of reducing uncertainty only by its relation to all the other messages that 
might have been received. Suppose a person is asked whether he smokes. 
Ifwe have no prior information other than population statistics on smoking, 
then all we know is the probability that he, as a random selection from the 
population, will answer "yes" or "no." When he selects one of these 
alternatives and transmits it, some information has been conveyed. But if 
it is known a priori that he does smoke, e.g., from previous conversations or 
from seeing him smoke, then with probability 1 the answer will be "yes" and 
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the receipt of "yes" from him cannot convey any (new) information. In 
effect, our prior knowledge reduced the set of possible messages to a single 
element, and so far as we are concerned there was no choice to be made. 
Thus, no information could be transmitted. 

The minimum condition, therefore, under which information can be 
transmitted is that of a choice between two alternatives. The maximum 
llncertainty in such a choice exists when the two alternatives are equally 
probable. Hence the maximum information is conveyed by a choice between 
two alternatives when they are equally likely. We take such a choice to be 
one unit of information. That is, whenever a choice is made between two 
n priori equally likely alternatives (no matter what they are) we shall say 
that one unit of information has been transmitted by the choice. According 
to Shannon, Tukey proposed that the unit be called a bit - a shortened 
form of binary digit - and that term is commonly used. Goldman [I9531 
prefers the term "binit" in order to avoid such expressions as "a bit of in- 
formation" which, unfortunately, has quite another everyday meaning, but 
I shall conform to common usage. All statements about information trans- 
mission, therefore, will be given in this unit; we shall speak of so many 
L L bits in a message," or the "bits transmitted per second," or the "bits per 
English letter," etc. 

With this as the definition of the unit, the next pioblem is to say just 
how many such units are transmitted when a selection is made from an 
arbitrary finite set with an arbitrary a priori probability distribution over 
it; and just how many units are transmitted when several selections are 
made. Certainly, one wants to require at  least this: if two independent 
choices are made between a priori equally likely alternatives, then a total 
of two bits of information are transmitted. More generally, we shall impose 
the condition that whenever two statistically independent selections occur, 
the total information transmitted is the sum of the amounts transmitted by 
each of the selections, i.e., the measure of information transmitted shall be 
additive. 

As an example of how the additivity condition and the bit may be used, 
consider a set of elements (think of them as letters of an alphabet or pho- 
nemes in a phonemic system) in which each element is equally likely to be 
selected. (This, of course, does not hold for any natural language.) Further, 
suppose that the number n of elements is of the form 2N,  where N is an 
integer. Question: when an element is chosen from this set, how many bits 
of information are conveyed? The answer is N bits per selection. We can 
easily show that there are no more than ,Arbits. Let any element be selected 
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and divide the set of elements into half, each half being composed of zN-' 
elements. The element selected is in one half or the other, and the informa- 
tion transmitted as to which half it is in is a decision between two equally 
likely alternatives (since each element has the same probability of being 
chosen). So, that conveys one bit of information. Take that set and divide 
it in half, each half now consisting of 2N-2 elements. Again, the decision as 
to which of the two sets contains the selected element is between two a priori 
equally likely alternatives, and so another bit of information is transmitted 
in isolating it. Continuing the process until the element is isolated clearly 
requires N steps, and, assuming additivity, N bits of information are trans- 
mitted. The fact that all the elements were assumed to be equally likely 
should suggest that no scheme can be devised to isolate the element in fewer 
than N binary decisions. This can be proved to be the case. I shall not prove 
it, for the conclusion that there are N bits per selection in this situation will 
follow from much stronger and deeper results to be presented later. 

The English alphabet consists of 26 letters which with punctuation marks 
comes to about 32 = 25 symbols. Were we to suppose them to be chosen 
independently and with equal probabilities (both patently false assumptions) 
then each letter of a message would yield five bits of information. Clearly, 
this is not an accurate estimate of the bits per letter in English prose. How- 
ever, it does stand as an upper bound to this number. Later (Chapter 7) 
more precise estimates will be given which show that it is actually somewhere 
between 1 and 2 bits per letter. 

Continuing with the example, observe that when n = zN, then N =  log2n 
by definition of the logarithm, and so we may say that in this situation there 
are log2n bits of information per element. We will find that our subsequent 
discussion of information transmission results in logarithmic measures slight- 
ly more complicated than this. 

3. THE DISCRETE NOISELESS SYSTEM 

IN THIS CHAPTER I shall discuss what is known as the discrete noiseless 
communication system. The definition of a noiseless system was given in 
the last section, and it may be summarized by saying that in such a system 
there is never any confusion at  the destination as to which signal (of a known 
class of signals) was emitted by the source. This, of course, does not mean 
that the signal received is necessarily physically identical to the signal sent, 
but only that no confusion can arise as to what signal was sent. 
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The word 'discrete' refers to the nature of the information source. I t  
describes a source which generates messages by temporally ordered sequences 
of selections from a finite set of possible choices. Thus, the discrete case 
includes a vast amount of familiar communication, such as the selections 
made from a phonemic system to generate words and sentences. But the 
theory of this section does not include sources, such as a musical instrument, 
which can select from a continuum of continuous functions; that theory is 
outlined in the appendix. 

Channel Capacity. In  any communication system the transmitter is so 
chosen as to match the source to the channel. Signals emanating from the 
transmitter, which are assumed to be in one-to-one correspondence with 
the selections made by the source, are propagated along the channel. As 
far as this communication process is concerned, the relevant effect of the 
physical characteristics of the channel is to determine how many different 
signals can be transmitted over it in a given space of time. Roughly, this is 
what we mean by the capacity of the channel. Formally, let N ( T )  denote 
the number of different signals which satisfy the following three properties: 

i. each signal can be emitted by the transmitter as a result of selections 
by the source, 

ii. each signal is admissible on the channel, i.e., each signal is compatible 
with the physical characteristics of the channel, 

iii. each signal is of duration T time units. 
From the discussion in the last section, it is suggested (though by no 

means proved) that if each of these N ( T )  signals were equally likely then 
there would be log,N(T) bits per signal of duration T time units, or 

bits per signal per unit time. Now, extending the discussion of the two- 
alternative case, it is plausible to suppose that the maximum information 
is transmitted when each signal is equally likely. Since we have taken N ( T )  
to be the largest number of different signals which may be transmitted over 
the channel in T time units, it is therefore reasonable to suppose that C ( T )  
is approximately the maximum number of bits of information per signal 
transmittible over the channel in one time unit. Since there can be only one 
signal on the channel at a time, C ( T )  is approximately the maximum num- 
ber of bits that can be handled by the channel in one unit of time. The 
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approximation will tend to be better the larger we take T, so we are led to 
define the capacity C of the channel to be: 

For any practical application of this concept the trick is to determine 
X ( T )  from the physical characteristics of the channel or from any theorems 
we may derive which involve C. In  the following subsection an example of 
the first procedure is given, and in a later subsection a theorem is given 
which has been used to find approximations to C empirically. 

A Special Case  of Channel Capacity.(*) For the moment let us restrict 
ourselves to a special class of transmitter-channel combinations which, 
possibly, is best illustrated by the familiar dot-dash telegraphy code. Suppose 
that at any instant there either is or is not a signal on the wire connecting 
the transmitter to the receiver. A dot will be represented by one time unit 
of signal and one time unit of no signal, and a dash by three units of signal 
followed by one unit of no signal. Between letters three units and between 
words six units of no signal are allowed. Problem: compute the channel 
capacity. 

For this system, let us define two different states which we shall call a, 
and a,. The system is in state a, following either a letter or a word space, 
and it is in state a, following either a dot or a dash. Since a word or letter 
space can never follow either a word or letter space, we know that the next 
signal after the system is in state a, must be a dot or a dash, so state a, must 
be followed by state a,; however, when the system is in state a, it can be 
followed by any of the four possibilities and so by either state a, or %. This 
is illustrated schematically in Fig. 3. 

We are now in a position to generalize this in a natural manner to a 
system having m possible states a,, a,, . . . ,a, and n possible signals S,,S,,. . . , 
S,,. When the system is in state ai only a certain subset of the signals may 
arise; let S, denote a typical one. We suppose that ai and the admissible S, 
together determine what the next state will be. Let us denote it by aj. For 
all such possible triples (i,s,j), let b$) denote the time duration of the sth 
symbol. Obviously certain of the combinations cannot arise, e.g., in the 
telegraphy case the triple (a,, word space, a,) is not admissible (see Fig. 3).  

(*) This subsection is not essential to the rest of the paper, and, as it is a little more 
difficult, some readers may choose to omit it. 
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On the other hand, (q, dash, a,) is admissible and its b value is four time 
units. 

The channel capacity of this system can be shown (Shannon, [1948]) 
to be given by 

C = log, wo , 

where Wo is the largest real root of the determinantal equation 

where 

In the telegraphy case, the graph of Fig. 3 can be put in the following 
matrix form: 

Next State 

Present I - dot or dash 

State I letter or dot or dash 
word space 

From this we see that the determinantal equation reads 
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Solving for Wo and computing log, Wo one finds that C=0.539 bits per 
unit time. 

More will be said about channel capacity before we are done, but first 
it is necessary to discuss the source and to develop a suitable measure for 
the average information generated by any discrete source. 

The Discrete Source. As I have said, it is assumed there is a source that 
makes selections (with replacement) from a finite set of elements and that 
messages are generated by temporally ordered selections from this set. The 
general situation is typified by the way we form written sentences by ordered 
selections of letters, blanks, and punctuation marks. 

A moment's reflection about English will suggest two important sta- 
tistical facts about many sources: 

i. There is no reason to suppose that the probability that one symbol 
will be selected is the same as that for another symbol: the letter ''2" is 
much less frequently used in English than is "e". 

ii. In  general, the choice of one symbol in the middle of a message will 
not be independent of the preceding choices: although "e" has a high a 

priori probability of being chosen, the probability is markedly reduced if the 
letters "automobi" have already been received and it is markedly increased 
if the letters "automobil" have been received. 

Although most human sources produce an interdependence between 
symbol selections - often called intersymbol influences - there are some 
cases of independence, such as the transmission of random numbers or 
of an unconnected set of telephone numbers. In the next subsection we shall 
analyze the case of independent selections and later the more complicated 
case where there are dependencies. 

To deal with these problems of symbols selected with different frequen- 
cies and of the interdependence of symbol selection, we shall obviously 
want to introduce probability distributions over the set of symbols. For this 
to make sense, we shall have to assume that the source is homogeneous in 
time, so that its statistical character - measured by any statistical parameter 
we choose - is the same at one time as at any other time. Such a source is 
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said to be stationary and the time series (of symbol selections) is called a 
stationary time series. This assumption is essential to the theory; it is one 
which seems plausible for many sources and not for others. For example, it 
does not hold for an individual who is learning. In  most cases, however, 
it is quite difficult to assure oneself that a source is stationary. The problem 
is very closely related to the difficulty in deciding whether a particular 
finite set of numbers can be considered a typical sample from a random 
sequence generated by some probability law. The condition does serve, 
however, to prevent us from considering as one source the New Tork Times 
from time 0 to time T and Izvestia from time T to time T', for the statistical 
structure of messages in these two time intervals will certainly be different - 
indeed, some of the symbols will differ. 

Assuming a stationary source S, we may now introduce a little necessary 
notation. We let p(i) denote the probability that symbol i in S will be 
selected and p (i, j )  the probability that symbols i and j in S will be selected 
in the order i and then j. In general, P (i, j) #P ( j ,  i) (consider, for example, 
q and u in English). In  general, if i, , i,, . . . , ik is an  ordered sequence of 
symbols, p (i, , i, , . . . , ik)denotes the probability of its occurrence. 

The selection of symbols is said to be independent if for every k and every 
possible sequence i,, i,, . . . , ik 

Before turning to the analysis of the case of independent selections, let 
me indicate how messages look when generated according to various assumed 
statistical dependencies. I shall present the output generated from a source 
which takes into account some (but not all) of the statistical structure of 
English. First, suppose that selections are independent but with the simple 
frequencies of English text. Using these frequencies and a table of random 
numbers, Shannon [1948] generated 

OCRO HLI RGWR NMIELWIS EU LL NBNESEBYA T H  EEI 
ALHENHTTPA OOBTTVA NAH BRL 

If, however, one includes some intersymbol influences, one may, for example, 
generate a message in which each selectibn depends on the two preceding 
ones. Using such data for English, Shannon generated 
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IN NO IST LAT WHEY CRATICT FROURE BIRS GROCID 
PONDENOME O F  DEMONSTURES O F  THE REPTAGIN IS 
REGOACTIONA O F  CRE 

Neither message is English, but the second is "more" English than the 
first. The greater ease a typist finds in copying the second passage as against 
the first reflects the difference. 

A Measure of Information Transmitted for Independent Selections. 
Let us assume for the present that messages are generated by independent 
selections from a discrete source. Statistically, then, the source is completely 
characterized by the probability distribution 

of symbol selection over the n symbols of the source S. The problem is to 
assign a number to the source, i.e., to the probability distribution P, which 
is deemed a suitable measure of the average amount of information trans- 
mitted when a symbol is selected from S. There are at least four ways to get 
to an answer (fortunately the same answer), and since each reveals some- 
thing of the structure of the problem and since the resulting statistic is of 
such great importance, I shall present all four. 

What we want is a function which assigns a number to each probability 
distribution; we may denote it by 

The first procedure, which is heuristic and easily remembered, rests on 
accepting the earlier argument that, when there are n = 2N equally likely 
alternatives, a suitable measure of the amount of information is N =  log,n. 
Let us extend this definition to n equally likely alternatives where n is now 
any integer, i.e., we shall say there are log,n bits per selection from among n 
equally likely selections. Now, if we consider any event of probability 
p = 1 In, then we may treat this event as one among n equally likely alterna- 
tives and so the information involved in its selection is 

1 
log, n = log, - = -log 

P 
zP. 

Finally, consider an event of probability p (not necessarily the reciprocal of 
an integer) : it is plausible to extend the above definitions further and to 
say that -log,p bits of information are transmitted by the occurrence of 
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this event of probability p. Thus, for the given source S, the selection of 
symbol i, which occurs with probability P (i), transmits -log,p (i) bits of 
information. We see that this has the very reasonable property that an 
occurrence of a very rare event transmits a great deal of information and 
an event with probability near 1 transmits almost no information. O n  the 
average, however, the amount of information transmitted is the expected 
value of a single selection from the source, i.e., 

H = -1 (i) log,p (i) bits/selection. 

i=  1 

The above expression is without a doubt the best known aspect of in- 
formation theory, and there are reasons to believe that this formula has 
blinded some to the content of the theory. It is, of course, nothing more 
nor less than a statistical parameter defined for all distributions -one which 
is in some ways similar to the variance. It obtains meaning and value in 
only two ways: first, as it is given a meaning in a theory, and second, as it 
becomes a conventionally accepted way of summarizing certain phenomena. 

Shannon called H the entropy of the source (or more properly of the 
distribution characterizing the source) because the same expression (with 
the opposite sign) arises in statistical mechanics and is called entropy there. 
There has been considerable controversy as to whether this is only a formal 
similarity, or whether physical entropy and information are two closely 
related phenomena. This is a point requiring careful and sophisticated dis- 
cussion and a rather deeper knowledge of physics than I want to assume 
here. Certain authors have been displeased with the term "entropy" and 
they have used terms such as the "amount of information" or simply the 
"information", the "specifity", and the "uncertainty" of this source. It is 
hard to say which term is the most common and which is the least objection- 
able - these two surely not being the same. Certainly, neither "amount of 
information" nor "information" are acceptable, since they lead much too 
easily to misinterpretations. Most often I shall use either "amount of in- 
formation transmitted" or "entropy", the former without intending any 
semantic overtones and the latter without a commitment as to the identity 
of this statistic with physical entropy. O n  occasions when "uncertainty" 
seems the more suggestive term, I shall use it too with the tacit understand- 
ing that it really means "average uncertainty." 

The second procedure to arrive at H, which many feel to be both the 
simplest and most elegant, amounts to a rigorous formulation of the first 
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one.(*j The technique is to state four conditions which intuitively seem to 
be met by the concept of "the information transmitted when a symbol i is 
selected, given that the a priori probability of its selection was p(i)." From 
these conditions we shall derive the entropy expression; they are: 

1. Independence of irrelevant alternatives.(t) The amount of information 
transmitted by a selection of i shall be a real number which depends only 
upon p (i) and not upon the probability distribution over the other symbols. 
Thus, we may denote the amount of information transmitted by the selec- 
tion of i by f [p (i)]. 

2. Continuity. f [p (i)] shall be a continuous function of p (i), since one 
feels that a very small change in p (i) should result in only a small change in 
the amount of information transmitted. 

3. Additivity. If two independent selections i and j with probabilitiesp (i) 
and p ( j )  are effected, then the amount of information transmitted in the 
joint selection (i, j ) ,  which has probability p (i)p ( j )  of occurring, shall be 
the simple sum of amount of information transmitted by each of the selec- 
tions, i.e., 

f [P (i)P ( j ) l  =f [P (91 +f [P (Ale 

4. Scale. In our discussion of the bit, we said that a selection with prob- 
ability 112 shall convey one bit, so we assume 

Now, observe that if n is an integer, then repeated application of the 
third assumption yields 

f (P") = nf(P) 

Let qn=p, then from the last equation, 

Thus, if m and n are integers, these two results combine to show that 

(*) This formalization was pointed out to me by Howard Raiffa. 
(t) This term is not traditional in information theory, but it is in the closely related 

decision theories where it has been widely assumed and debated. There is every evidence 
from there that this condition, whatever it is called, must be considered much less innocent 
than it appears to be at first glance. 
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Let x be any number. We can choose integers m and n such that mln is 
arbitrarily close to x, so by the continuity assumption 

Now, choose x = --log2p, so (a)" =p, then 

Thus, we have the form of the expression for the amount of information 
transmitted by the selection of any symbol with an a priori probability p of 
being selected. 

The expected value of the amount of information transmitted by a 
source with probability distribution p (i) is therefore 

A third method to obtain the above expression, which is due to Shannon 
[1948], is similar to the last one except that it deals with the whole distri- 
bution at once. The procedure is to state five apriori conditions which many 
feel must be met by any measure of the average amount of information 
transmitted per selection from the source. 

1. The average amount of information transmitted shall be a real- 
valued function of the n arguments p ( l ) ,p  (2), . . . ,p (n) ; it will be denoted 

H [ ~ ( 1 ) l ~ ( 2 ) J " . , ~ ( n ) l '  

Next, it seems reasonable, as in the second method, to suppose that if 
the distribution is changed very slightly, then H should also change only 
slightly, so we require that 

2. H shall be a continuous function in each of its n arguments. 

Further, suppose we consider all sources for which the symbols are 
equally likely, i.e., p (i) = lln. As n is increased there is more information 
transmitted by the selection of one symbol since more messages of a given 
length are possible, so we require 

3. When p (i) = 1 /n for all i, then H is a monotonically increasing func- 
tion of n. 
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Next, we wish to require that if the calculation of the amount of infor- 
mation in a source is divided into a series of subcalculations, then the mode 
of subdivision shall not alter its value. More exactly, suppose S' is a subset 
of S (which by relabeling we may always take to be the elements 1,2,. . .,s). 
The set S' can, of course, be treated as a single element sf with probability of 
occurrence 

If the form for H is known, we can compute its value for S, for the set 
with elements sl,s + 1,. . ., n, and for the set S' alone. (*) Our condition 
asserts that the first number shall be equal to the weighted sum of the last 
two, i.e., 

Finally, we impose the definition of the unit: 

From these five conditions, each of which seems to be plausible, Shan- 
non has shown, in a manner similar to that employed in the second method, 
that H must be of the form 

" 

Before we discuss any of the properties of H and relate it to the other 
quantity - channel capacity - which we have defined, let us arrive a t  the 
expression for H from a fourth point of view. The following argument is 
given by Fano [1949], and it is similar to one presented by Shannon [1948]. 
A plausible way to compare sources is to define a recoding of any source 
which takes into account the probability distribution of the source and which 
results in one of a set of standard normal forms of sources. If we can assign 
a number to each of these normal forms in an intuitively acceptable way, 
then we have indirectly assigned a number to each source. Of course, the 

(*) The analogue o f  the "independence o f  irrelevant alternatives" is implicitly assumed 
at this point when we suppose that choices from S' are governed b y  the probabilities p ( 1 ) l  
f i  ( s t ) ,  . . . ,p ( s ) /p  (5'). Actually, this is an extremely powerful, i f  seemingly plausible, assump- 
tion which is the common thread o f  many theories o f  choice behavior, as I have shown 
elsewhere (Luce, [ 19591). 
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only sources to which we have associated any numbers so far are the binary 
equally likely ones, so it is more than reasonable that we should attempt a 
recoding into binary equally likely selections. 

This may be done in the following manner. Form all possible messages 
of length r, i.e., messages consisting of r symbols, and call this set R. Since 
the selections are independent, the probability of each message is simply the 
product of the probabilities of the individual selections which make it up, 
hence we know the probability of each message. Thus, we have a probability 
distribution over R. Divide R  into a subset R ,  and its complement El  with 
respect to R  in such a manner that the sum of the probabilities of messages 
in R ,  is as near 1 /2 as possible. T o  each message in R ,  assign the digit 1 and 
to each in El  the digit 0. Now, divide R ,  into a subset R ,  and its complement 
x, with respect to R ,  (not R ) .  Again the choice ofR, is such that the probabil- 
ity of messages in R ,  is as nearly equal as possible to those in x,. T o  those 
messages in R ,  assign a second digit 1, so now 1 1 is assigned to each message 
in R , .  To those in E ,  assign as the second digit 0, so 10 is assigned to each 
message of E , .  Carry out a similar process in El leading to the numbers 
01 and 00. Continue this "probability halving" until the classes contain 
single messages. In this manner each message will have assigned to it a 
sequence of binary digits, the length of the sequence being in large part 
determined by the probability that the message will occur - the more 
probable messages having fewer digits than the less probable ones. 

An example may make the process clearer: 

Probability 
Message of occurrence 

A 0.50 
B 0.13 
C 0.12 
D 0.12 
E 0.06 
F 0.07 

first second third fourth 
digit digit digit digit 

1 - - - 
0 1 1 - 
0 1 0 - 
0 0 1 - 
0 0 0 1 
0 0 0 0 

The first division is between {A} and {B, C, D, E, F,}. No further division of 
A is possible. The other set is divided into {B,C} and {D,E,F}. These in 
turn are divided as {B} and {C) and as {D} and {E,F}. The final division 
is of {E,F} into {E} and {F). 

Such a coding as this is efficient in the sense that the fewest number of 
binary digits are assigned to the most probable messages and the largest 
number to the least probable ones. Now, one can ask how many binary 
digits are required on the average per symbol when messages of length r 
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are considered. That is, for each message we multiply the number of digits 
required by the probability that the message occurs, sum these products 
over all messages, and divide the sum by the total number of symbols r in 
a message. Call this number Hr . In the above example Hr = 2.13/r bits per 
symbol. The lim Hr is a number assigned to each discrete source which both 

r+co 

has a plausible meaning and will serve to compare different sources. For- 
tunately, it can be shown that 

n 

Thus by four (really only three) routes we have come to the same sta- 
tistic as the appropriate one to describe the average nature of the source. 
We can defend it in two further ways; first, by stating some of its properties 
and showing that they are reasonable for a measure of information trans- 
mitted, and second, by using it to make theoretical statements about the 
transmission of information. 

Properties of H. A number of theorems about H may be proved (Shannon, 
[:1.948]) ; as we shall need them later, and as they help to give a feel for H, 
I shall state them. 

i. H 2 0, and H=O if and only if all p (i) except one equal zero. In  
other words, the entropy of a distribution is always non-negative, and it is 
zero if and only if the selection of one symbol is certain. Intuitively, no in- 
formation is conveyed when the selection is certain, and accordingly H =  0. 

ii. Any averaging of the probabilities in the source increases the value 
of H. From this, or in other ways, it can be shown that H assumes its maxi- 
mum value, which is log,n, when and only when each of the symbols is 
equally likely, i.e., when each has probability p (i) = l/n of being selected. 

These two properties of H have led many authors to speak of H as the 
uncertainty of the source: H assumes its maximum when the selections are 
maximally "uncertain" and its minimum when absolute certainty obtains. 
Without disputing the point they have made, it must be mentioned that 
this use of the word "uncertainty" is a t  variance with its use in (statistical) 
decision theory. There, if an a priori probability distribution is known, one 
speaks of decision making under risk, and uncertainty is reserved for those 
cases where the distribution is not completely known. Thus, if the two vo- 
cabularies were to be consistent, H should be described as an average measure 
of risk, not of uncertainty. 
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iii. Let any long message of N symbols be selected and suppose that it 
has probability p of occurring, then -( log,p)/N is an estimator of H(*). This 
last result is, of course, important in estimating H in practical situations, 
since all that can be observed generally is one message of some long duration. 
I t  must be pointed out that when this result is given in precise mathematical 
language, it asserts that -(log,p)/N almost certainly approaches H a s  N 
approaches infinity, i. e., the estimation scheme is consistent. 

Non-independent Selections. So far our discussion of the source has been 
restricted to the independent case, which, as was pointed out, does not 
include most sources. But our efforts will not be lost, for fortunately we 
can readily carry over the results for independent sources to the non-inde- 
pendent case. 

Consider the selection of one symbol from the set S = { 1,2,. . . , n) 
followed by a second selection from the same set (possibly the next one in 
forming a message, but we do not need to restrict ourselves to that case). 
More formally, let x and y be random variables with range S. The joint 
distribution of x and y is assumed to be known and we shall, for convenience, 
denote the probability that x = i and y = j by p (i,j). In general, of course, 
p (i,j) # p (i)p ( j )  since the selections need not be independent. The distribu- 
tion p (i,j) is now defined over the product space(?) of S with itself, S x S, 
which is of course a set and so is included among the arbitrary sources we 
have considered earlier. The definition of entropy can be applied without 
alteration to the distribution p(i , j ) ,  and hence we have as the entropy of 
the joint distribution of x,y, 

Similarly, the definition can be applied to the distribution of the random 
variable x alone and to that ofy alone, and so we have 

(*) The plausibility of this can be seen as follows: In a message of length N ,  the expected 
number of times that the symbol i will occur is p ( i ) N .  Thus, the expectation of the message 
itself is 

p' = p ( l ) P ( ' ) N f l ( 2 ) P ( 2 ) N . .  . . p ( n ) P ( n ) N .  
Observe, 

(t) The product space of two sets R and S, R x S,  is the set of all ordered pairs ( r , s ) ,  
where r is an element from R and s an element from S.  
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~ ( x )  = - 2 P  (i, j )  l o g 2 Z p  (i, j )  
i,j I 

where P (i) = ZP (i,j) and P ( j )  =ZP (iyj) . 

From these definitions Shannon [1948] noted the following theorem : (*) 

This result simply states that the entropy (or average uncertainty or amount 
of information transmitted) of the joint distribution has the intuitively 

(+) A simple proof, which was pointed out to me by Lee Abramson, is this: From 
elementary properties of the logarithm, 

whereojj = p(i)p(j) - . S i n c e z p  (i)p (j) = z p  (i) zp (j)  = 1, 
P 

i,i I i 

o = log, 1 = loga z p  (i, j) P X i )  { i,j [ b (i,j) I} 

S i n c e z p  (i, j) = 1 and the logarithm is convex, 

i, i 

Z P G , i )  Iogsaij 5 log, 
1,J 
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necessary property that it is no larger than the sum of the entropies for the 
two distributions considered separately. In  addition it is easily seen that 

if the events x and y are independent. Thus, whenever there is any inter- 
symbol influence in the selections, less information is transmitted per symbol 
than if they had been independent. 

If we introduce the conditional probabilities relating the distribution 
o f y  to that of x, further relationships of interest can be established. Let 
p ( j l i )  denote the conditional probability that y = j given that x = i, i. e., 

The conditional entropy of the random variable y given that x = i is 
defined to be 

H ( Y  lx = i) = -)p(jli)log,p(jIi). 
i 

Hence the expected conditional entropy of the random variable y given x is 

H, (y) measures the average uncertainty in the selection represented by y 
after the selection denoted by x is known. 

Shannon has shown that(*) 

which, in words, states that the average uncertainty of the joint distribution 
is equal to the average uncertainty of the distribution of x added to the 

(*) This result is readily proved: 
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average uncertainty of the distribution ofy  when the value of x is known. 
From this and the preceding result, the following corollary is readily seen 
to hold : 

H(Y) 2 (Y! J 

i. e., the average uncertainty of the distribution ofy is never increased by a 
knowledge of x. The two are equal if' and only if the two random variables 
are independent. 

One final concept: the ratio of the entropy of a source to the maximum 
entropy possible with the same set of symbols is a measure of the information 
transmitting efficiency of the source - Shannon called it the relative 
entropy. I t  is generally less than one, either because there is a non-uniform 
distribution over the symbols or because of the non-independence of symbol 
selection or, most commonly, because of both. One minus this quantity 
indicates the percentage of symbols which, though sent, carry no infor- 
mation, i. e., which are redundant. Thus we define the r~dundancy of a source 
to be 

H H 
-1--- . 

max H logzn 

Several estimation procedures indicate that the redundancy of written 
English is at  least 50 per cent and very likely nearer 75 per cent (see Chapter 
7). The reason for such high redundancy will become apparent later. 

In discussing the applicability of information theory to certain problems 
in psychology, Miller and Frick [1949] suggested that redundancy be called 
the index of behavioral stereotypy. The motive for this term of course is that 
redundancy is a quantity which is 1 when the behavior is completely 
stereotypic and 0 when each of the several alternatives arises with equal 
probability. For the most part, however, the shorter term is used. 

The Fundamental Theorem of a Noiseless System. The following 
fundamental result, due to Shannon [1948], shows in effect that the above 
definitions of channel capacity and of source entropy or average uncertainty 
are suitable formalizations of our intuitions about the limitations on infor- 
mation transmission. 

Theorem: Let the entropy of a source be H bits per symbol and the capacity of a 
noiseless channel be C bits per second. For any positive number E no matter how small, 
there exists a coding of the source, i. e., thre exists a transmitter, such that it is 
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possible to transmit at an average rate of (C/H) - E symbols per second. It is not 
possible to devise a code so as to transmit at an average rate of more than C/H symbols 
per second. 

Three points should be made about this theorem. First, it must be kept 
in mind that the definition of the entropy of a source rests only upon the 
statistical structure of the source, and it does not in any way depend upon 
the properties of the channel. The capacity of the channel depends only 
upon channel properties and not a t  all upon the statistical structure of the 
source. The theorem asserts that these definitions have, however, been so 
chosen that the ratio C/H is the least upper bound of the transmission rate. 

Second, the code which the theorem asserts to exist is, of course, influ- 
enced by how small we take E. If E is near C/H then nearly any code will do, 
but as E approaches 0 fewer and fewer codes will produce a rate of (C/H) - E. 
But the theorem asserts that there will always be at least one. A major 
unsolved problem of information theory is to devise a theorem which 
describes such a code in detail for given values of C, H, and E ;  the above 
theorem only asserts that such a code exists. 

Third, such optimal use of the channel as described in the theorem is 
not effected without paying some price. The price is delay. If one is to code 
a message optimally when there are intersymbol influences, then it is 
necessary to wait before transmission to see how that influence can be 
utilized in the coding, thus effecting a delay in the transmission. Similarly, 
at  the receiver, the translation into the language of the destination must be 
delayed in exactly the same way, for a single received symbol will have 
meaning only by its relation to a number of others. In  practical engineering 
work a compromise is reached between long delays (and hence expensive 
storage equipment) and nearly optimal use of the channel. 

The theorem may be recast in a slightly different form, which may help 
clarify it and which will be useful when we study the noisy system. Let R 
denote the average rate at  which symbols are transmitted over the channel 
when a given code is used. The theorem then asserts that C/H> R and that 
there exist codes such that the corresponding R is arbitrarily close to C/H. 
If we rewrite this as C >  HR and then maximize both sides with respect 
to all possible codes we have 

C = max C = max (HR) . 
codes codes 

I t  is conventional, though misleading, simply to replace HR in the above 
expression by H. Previously, the entropy of a source was measured in "bits 
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per symbol," but in this reformulation we measure the entropy of the source 
(and transmitter combination) in "bits per symbol" times "symbols per 
second," i. e., in "bits per second" transmitted. The theorem then asserts 
that the channel capacity is equal to the maximum number of bits per second 
which can be transmitted by the source-transmitter combination over the 
channel. In  this form, and in a corresponding form for noisy systems, the 
fundamental theorem has been used in behavioral applications. 

4. THE DISCRETE NOISY SYSTEM 

As IN THE PRECEDING chapter, I shall suppose that the source is dis- 
crete, but I shall now drop the condition of a noiseless system. 

Equivocation and Channel Capacity. The significant effect of noise in 
a system, as was pointed out in Chapter 2, is to cause the destination some- 
times to be mistaken as to which symbol was transmitted. Any other prop- 
erties the noise may have are irrelevant in this theory of information trans- 
mission. Thus, if we assume that both the signal and the noise time series 
are stationary, and that the noise affects successive selections independently, 
then the noise is completely characterized by the matrix of conditional 
probabilities $ ( j  1 i) which state the probability that symbol j is received 
when i was sent. Formally, this situation is identical to the case of non- 
independent selections: in that case we interpreted j as a selection following 
i ;  here we shall interpret j as the selection received at the destination when 
i was actually selected at the source. 

The quantities H(x), H(y) ,  H(x,y) and H, (y) are defined as before. 
H(x) is the entropy of the source distribution, H(y)  the entropy of the 
destination distribution, H(x,y) the entropy of the joint distribution of x 
and y, Hy (x) measures the average ambiguity in the signal sent given the 
received signal, while H, (y) measures the average ambiguity of the received 
signal given the signal which was sent. When we are considering noise, 
Hy (x) is called equivocation. 

If a system is noiseless, then H, (y) = 0 = Hy (x) and so H(x) = H(y)  . 
Let us suppose that all the entropies are calculated in bitslsec, rather 

than bitslsymbol, then the effective avera,ge rate of transmission, R, (in bitslsec) 
is the average rate of information sent, H(x), minus that which was lost 
as a result of the noise, Hy (x) : 
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This can easily be shown to be equal to two other expressions, the first of 
which states that the rate of transmission is the difference between what was 
received and what was received incorrectly. In symbols, 

The notion of rate of transmission for the noisy case is analogous to that 
introduced for the noiseless case in the last statement of the fundamental 
theorem of the noiseless case. I t  suggests that one way to define channel 
capacity in the noisy case is as follows: 

C = max [H  (x) - H, (x)] . 
codes 

By the theorem of the last section, this definition reduces to that of channel 
capacity of a noiseless system since in that case H, (x) = 0. Note, it does not 
reduce directly to the deJinition of channel capacity as given early in Chapter 
3; however, later a theorem will be presented which shows that there is 
an analogous, though more complicated, definition for the noisy case. 

Theorems. Consider the communication system diagrammed in Fig. 4. 
We assume that there is an observer who is able to perceive without error 
both the selections made by the source and the corresponding signals 
received at  the destination. Let us suppose that the equivocation due to 
noise is H, (x). If there is a noiseless correction channel from the observer 

NOISE 
SOURCE 

FIG. 4. 

to the destination with capacity H, (x) bitslsec, it can be shown (Shannon, 
[1948]) that it is possible to encode correction data in such a manner as to 
correct all but an  arbitrarily small fraction of the errors due to the noise. 
This is impossible if the channel capacity of the correction channel is less 
than H, (x). This theorem is of theoretical interest - it shows that H, (x) 
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does in fact summarize the average effect of the noise. But it is certainly 
not a practical scheme to combat noise. 

The following result, which is due to Feinstein [I9541 and which is 
somewhat sharper than the original result of Shannon [1948], is a funda- 
mental theorem for the noisy case. 

Theorem. Let the entroky of a source be H bits per second and the capacity of the 
channel C bits pcr second. Let r be any number larger than 0. If H <C, then there 
is a number N (r, H) such that among all messages of length N > N  (r, H) we can 

j n d  a subset {ui) having at least 2NH members wi th the properties that 

1. we may associate a set Bi of messages of length N to each ui in such a way  that 
f u i  is sent the probability that a member of Bi is received is greater than 1 - r, and 

2 .  the sets B, are non-overlapfiing. 

H > C , this cannot be done. 

Let us examine the various components of this result. As in all such 
theorems, c is to be thought of as a very small number which represents the 
permitted error tolerance. We are then required to consider long messages, 
the length depending upon both the value of H and how small we take r. 
Of these nN possible messages we consider a subset { ui) .  This subset includes 
most of the possible messages, e. g., if the selections are equiprobable, then 
it includes all of them since nN= 2 N ' 0 g a n ~  2NH. The theorem asserts that 
to each of these messages we can associate a subset Bi of messages such that 
if, whenever a member of Bi is received, we infer that ui was sent, then we 
know that the probability of being wrong is less than r. This last statement 
is not justified by 1 alone, for if the sets B i  were to overlap there would not 
always be a unique inference. So part of the assertion is that they do not 
overlap. In  this way, the effect of the noise can be combatted as effectively 
as we choose whenever H  <C. The more effective we require the coding 
process to be, the larger we are forced to take N. This means that the price 
of combatting noise is delay, which in practice means extensive storage 
equipment. 

Note that the theorem also asserts that it is never possible to do this 
if H > C .  

Shannon's original theorem, which is weaker than Feinstein's result, can 
be stated in the following way: 
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Theorem: Let the entropy of a source be H bits per second and the capacity of the 
channel C bits per second. If H C , then there exists a coding scheme such that the 
output of the source can be transmitted over the channel with an arbitrarily small 
frequency of errors. If H > C , it  is possible to reduce the equivocation to as near 
H-C as one chooses, but it  is not possible to reduce it below H-C . 

McMillan's comments on this result seem to be worth repeating: 

"Engineering experience has been that the presence in the channel of 
pertubation, noise, in the engineer's language, always degrades the exact- 
itude of transmission. [The theorem] above leads us to expect that this need 
not always be the case, that perfect transmission can sometimes be achieved 
in spite of noise. This practical conclusion runs so counter to naive experience 
that it has been publicly challenged on occasion. What is overlooked by the 
challengers is, of course, that 'perfect transmission' is here defined quantita- 
tively in terms of the capabilities of the channel or medium, perfection can 
be possible only when transmission proceeds at  a slow enough rate. When it 
is pointed out that merely by repeating each message sufficiently often one 
can achieve virtually perfect transmission at  a very slow rate, the challenger 
usually withdraws. In doing so, however, he is again misled, for in most 
cases the device of repeating messages for accuracy does not by any means 
exploit the actual capacity of the channel. 

"Historically, engineers have always faced the problem of bulk in their 
messages, that is, the problem of transmitting rapidly or efficiently in order 
to make a given facility as useful as possible. The problem of noise has also 
plagued them, and in many contexts it was realized that some kind of 
exchange was possible, for example, noise could be eliminated by slower or 
less 'efficient' transmission. Shannon's theorem has given a general and 
precise statement of the asymptotic manner in which this exchange takes 
place." (1953, p. 207). 

He goes on to point out the similarity in the exchange between bulk and 
noise and the rather general exchange between sample size and power in 
statistical tests. 

Although the simple repetition of a message is not usually an efficient 
way to employ the channel capacity to eliminate errors, some form of 
redundant transmission is required. In  general it will be far more complicat- 
ed than repetition, but, as with repetition, a delay in the reception of a 
message must result. The essential point of the theorem is that the delay 
need not be such as to reduce the rate of transmission to zero. The proof 
of the theorem is not constructive and so there is no indication what code 
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to use to utilize fully the channel capacity. Shannon and Weaver write, 
"Probably this is no accident but is related to the difficulty of giving an 
explicit construction for a good approximation to a random sequence." 
([1948], p. 43) Much recent (engineering) work in information theory has 
been devoted to finding near optimal codes for certain important special 
cases. 

Shannon's fundamental theorem of the noisy case may be recast in a 
form that shows the relation of the present definition of channel capacity 
to that given for the noiseless case. Let q be a number such that 0 <q < 1 . 
Consider all possible signals of duration T time units which might be 
transmitted over the channel and let R denote a typical subset of these 
signals. Under the assumption that each signal of R is equally probable 
and taking into account the statistics of the noise, let a receiver be designed 
to choose as the cause of the signal it receives the one in R which most likely 
is distorted into the one received. I t  is clear that in general errors will be 
made; let p (R) denote the probability that an incorrect interpretation will 
be made when the subset is R. Consider now all those subsets R such that 
p(R) <q. Among these sets there is one which contains the most signals, 
let that number be denoted by N(T,q). Shannon [1948] then showed that 

C = lim l o g d  ( T  q) 
I--+ co T y 

which is clearly analogous to the original definition of channel capacity for 
the noiseless case. I t  is remarkable that this result is independent of the value 
of q. Presumably, however, the rate of convergence of the limit is not inde- 
pendent of q, and so in any application of the theorem one should attempt 
to exploit the freedom in choosing q. 

Channel Capacity of a Noisy System: Independent Selections. 
Shannon [1948] and Fano [1950] have shown that if one assumes that 
the selections at the source are independent, then the capacity of the channel 
is given by the transcendental equation 

where h( j l  i) is a typical element of the inverse of the noise matrix, i. e., 



[38] The Theory of Selective Information and Some of Its Behavioral Afifilicationr 

I t  is difficult, if not impossible, to see the dependence of channel capacity 
on the noise matrix from this equation, but, of course, in any given case 
one can solve for C numerically. However, if we can assume that the noise 
has the same disturbing effect on each symbol of the source, i. e., 

is independent ofp  (i) , then it can be shown (Fano [1950]) that 

In  the special case of a binary source (two elements) and noise such that 
the probability of an erroneous transmission is a, then the capacity is given 

by 
C =  l + a l o g , a + ( l - a ) l o g 2 ( l - a ) .  

I t  is easy to make interesting calculations using this last expression. For 
example, if the chance of an error is 1 per cent, then the channel capacity 
is reduced to approximately 90 per cent of its value in the absence of noise. 
This marked non-linearity must be kept in mind whenever thinking about 
the effects of noise. 

5. SOME ASPECTS 'OF DISCRETE THEORY RELATED TO APPLICATIONS 

As WE SHALL SEE in some detail in Section 11, many of the applications 
of information theory in psychology are to problems not classically 
described as communication. Indeed, they are communication problems 
only in the sense that any experiment, or any decision, can be treated as a 
transmission of information. Put another way, in the attempt to analyze 
communication systems, a mathematical formalism has been produced to 
deal with the average character of certain inference problems, and this 
mathematics can be completely divorced from its realization as a communi- 
cation system. At the same time, there are other realizations of the same 
mathematical system in psychology. Because of its origins, however, the 
information terminology is associated with the mathematics and so with 
its applications. Some of this vocabulary may seem peculiar in some 
applications, but it is probably not as misleading as it may seem initially. 
In  this section, I propose to discuss (but divorced from the communication 
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model) a part of the formalism that has been particularly important in 
psychological applications. The topics to be considered are: a relation 
between the rate of information transmission and statistical inference, a 
generalization of the notion of transmission rate, and the statistical sampling 
and significance problems. 

Inverse  Probabilities, Bayes Theorem,  Contingency Tables. The 
structure of very many problems in psychology and the other behavioral 
sciences can be reduced to the existence of two classes of possible occurrences, 
usually called stimuli and responses, such that an occurrence in the response 
class is in some degree dependent upon what stimulus occurred. I t  is not 
easy to characterize in a useful and simple way the relation between these 
two classes of occurrences. It is, of course, possible to present the whole 
matrix of joint probabilities P ( i , j ) ,  i. e., to give the entire contingency 
table, but this hardly can be called simple. Various measures of contingency 
have been proposed and used, but objections have been raised to each of 
these. Still another possibility - one that has found favor among some 
psychologists - is the entropy measure. The expression most often used is 

which, when the entropies are measured in bitslsec, is called the rate of 
information transmission (Chapter 4). As often as not, time does not enter 
into psychological applications in a natural manner, and it is more appro- 
priate to treat the stimuli and the responses as static and to measure entropies 
in bits. In that case the following notation is employed: 

T(x;yj = H(x) +H(y)-H(x,y) 

= H (x) - H, (x) 

= H(Y) -H, (Y) 3 

and the quantity T(x;y) is simply called the information transmitted from the 
stimulus to the response. I t  is a quantity which is 0 when the random vari- 
ables x and y are statistically independent and it is a maximum when they 
are in one-to-one correspondence, i. e., when a knowledge of the value 
of x uniquely determines the value ofy and conversely. In other words, T 
is a measure of the contingency between x and y. 

Note that in this interpretation of the formalism the role of the human 
being has changed: Previously, we had thought of the source and the 
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destination as people and the channel as a physical entity. In  most psychol- 
ogical applications, the stimuli correspond to the source and the responses 
to the destination; the subject is treated as a noisy channel causing less than 
perfect correspondence between the stimuli and the responses. 

One can also think of the relation between the two random variables 
x and y as a problem of inferring as well as possible the value of x from a 
knowledge of the value o fy .  This is, of course, the problem of inverse 
probabilities which has had a long history in statistical theory, and Bayes 
theorem is one of the most famous results. We may think of it in the following 
form: There are n possible underlying states of nature, i = 1,2,. . . , n, which 
are known a priori to have probabilities p (i) of occurring. We suppose an 
experiment is performed with possible outcomes j = 1,2,. . . ,my the actual 
outcome depending somewhat upon which state obtains. Let x be a random 
variable with range the states of nature and distributed according to p (i) 
and y a random variable with range the experimental outcomes. Further, 
let us assume as known the conditional probabilities, p ( j  ( i) , that y =j when 
x = i. The problem then is to estimate the probability x = i when the outcome 
of the experiment is known, i. e., when y =j is given. 

Cherry [1953] describes the analogy to the noisy communication system 
as ". . . an observer receives the distorted output signals (the posterior 
data.. .) from which he attempts to reconstruct the input signals (the 
hypotheses), knowing only the language statistics (the prior data) ." (p, 39). 

I t  is well known that Bayes theorem reads, 

If one takes logarithms on both sides of this equation, multiplies the 
result by p (i,j), and then sums on both i and j, the result is simply 

i. e., the information transmitted from x toy. 
Deeper connections between conventional statistics and the information 

statistic have been explored by Kullback and Leibler [1951] and Kullback 
[1952]. 

Modern statistical inference, stemming largely from Wald [1947] (also 
see Blackwell and Girshick [1954], and Savage [1954]), takes a somewhat 
different tack. One of the central notions is that there must be given an 
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evaluation of incorrect decisions, i.e., a loss function must be selected, and 
the problem is then to reach inferences which are optimal relative to that 
function. Our point of view has been tacitly to minimize information loss. 
However, other possible loss functions could be examined. Van Meter and 
Middleton [1954] have presented a theory along these lines which rests 
upon statistical decision theory and is therefore beyond the scope of this 
survey. 

Multivariate Theory. An alternative way of viewing information theory 
- one which seems especially useful in many psychological applications - 
draws a close parallel between an information analysis of stimulus-response 
patterns and analysis of variance. It is a more general, and so a weaker, 
analysis than analysis of variance since it does not presuppose any metric 
information about the stimulus or the response sets. 

Suppose we are analyzing a stimulus-response situation by information 
theoretical techniques, then the basic equation we have developed, 

decomposes an  average measure of the response pattern into two parts: 
T(x;y), which is determined by the stimulus, and Hx(y),  which is unex- 
plained "random" variation - random in the sense that it is uncorrelated 
with the stimulus x. I t  may very well happen that a considerable portion 
of the residue Hx (y) can be explained in a systematic manner, though not 
by the experimental stimuli that have so far been considered. For example, 
consider an experiment in which subjects are required to classify liminal 
tones into one of n categories. I t  may very well happen that the subject's 
response is determined only in small part by the tone presented, but that 
in large part it is predictable from a knowledge of his previous response, 
even if we do not know the stimulus. In  such a case, it may be not only 
appropriate but essential to consider as the stimulus the pair of random 
variables (u,v), where u has the possible tones as its range and v the possible 
previous responses of the subject. In  other words, in some cases we may be 
able to understand the phenomenon adequately only if we treat as the 
stimulus a random variable with a range which is the product space of two, 
or more, simpler sets. McGill [1953, 1954, 1955 a, 1955 b] has examined 
this problem in some detail and he has appropriately generalized the trans- 
mission concepts so as to produce a multivariate theory where, of course, 
Shannon's theory is the bivariate case. I shall recount this development 
briefly. 
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First of all, we may replace x by the symbol (u,v), which is equivalent 
to x when the range of x is the product space of the ranges of the random 
variables u and u, in the equation for information transmission. This yields 

(I have systematically omitted the extra parentheses about u,u for greater 
clarity). I t  is clear that in our discussion there has not been any formal 
notion of direction of transmission between source and receiver, and so they 
may be interchanged. Formally, 

Next, we want to introduce a measure which gives the separate depend- 
ence ofy  upon u and upon u. To  do this, it seems appropriate to define a 
measure of the conditional information transmitted from the stimulus u 
to the response y when the stimulus v is held constant, say at  the value j. 
With u fixed, this is simply the transmission expression we have obtained 
previously, namely, 

Now, since we deal only with averages, we shall need 

Expand each of the three terms on the right, e. g., the first gives: 

=czp (i, j )  log, P (jyj) 

j 1 P ( j )  
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The other terms are similar, and combining them we obtain 

In like manner, 

Clearly, v will have an effect on the average transmission from u toy if and 
only if Tu (u;y) # T(u;y) , and the magnitude of this effect is measured by 

A (uvy) = Tu (u;Y) - T ( ~ ; Y )  

Similar quantities can be defined to measure the effect of u on the transmis- 
sion from v toy and ofy on the transmission from u to v. There is not, how- 
ever, any need to introduce a new symbol for each of these since they can 
all easily be shown to be equal, i. e., 

6 6 In view of this symmetry, we may call A (uvy) the u.v.y interaction 
information. We see that A (uvy) is the gain (or loss) in sample information 
transmitted between any two of the variables, due to additional knowledge 
of the third variables." [McGill, 1954, p. 1011. We shall return to the exact 
meaning of this term below. 

With these concepts, it is now possible to express the three-dimensional 
average information transmitted in terms of the two-dimensional ones and 
the interaction information. We show that 

Substituting one of the expressions for A, 

Now substitute the H expressions for the two right hand terms, 
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but this was previously shown to be equal to T(u,u;y) . The second expression 
follows immediately from the definition of A. 

We may write this three-dimensional information transmission in another 
way which parallels the familiar equation H(y)  = H, (y) + T(x;y) , namely, 

H(Y) = H,,(Y) + T(u,v;y) 

= H,, (y) + T ( ~ ; Y )  + T ( ~ ; Y )  + A ( u ~ )  

The term H, (y) is the residual or unexplained variability in the response 
y after the information about y given by u and by u and the interaction 
information of the three variables has been removed. 

An initially unexpected feature of McGill's analysis was the possibility 
that the interaction term may be negative. As Miller ([I954 a], p. 41 1) put 
it, "In other words, a knowledge of the input [v] may decrease the amount 
of information that [y] has about [u] - communication from [u] to [y] 
would actually be better if no data about [v] were collected at all!" Are 
we then forced to think of the transmission of negative information? No, 
for as McGill [I955 a] has pointed out the interaction term A is composed 
of two effects: the interaction of the three variables plus the correlation of 
u and v. If the correlation is high, then there is a good chance that A will 
be negative. Thus, he argues, if sense is to be made of the interaction term, 
we must choose u and v to be independent in the experimental design. I t  is 
not obvious, however, that the organism being studied will necessarily elect 
to respond only to statistically independent variables. We can easily confine 
our analysis to such cases, but we may a t  the same time limit the possibility 
of describing the behavior simply. 

One of the most important and desirable properties of the information 
statistic - entropy - is its additive character. This was apparent in the 
two-dimensional case and is even more forcibly illustrated in the three- 
dimensional theory. Each of the contributions - that from u, from u, from 
the interaction, and from the unexplained variability - is simply added 
to obtain the information in the response pattern. Thus, information 
analysis of a stimulus-response situation seems to parallel analysis ofvariance. 
McGill [1953, 1955 a] and Garner and McGill [1956] have shown that there 
is in fact a striking formal parallel between information analysis, analysis 
of variance, and correlational analysis. To be sure, there are differences: 
". . . information transmission is made to order for contingency tables. 
Measures of transmitted information are zero when variables are independ- 
ent in the contingency-sense (as opposed to the restriction to linear independ- 
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ence in analysis of variance). In  addition, the analysis is designed for fre- 
quency data in discrete categories, while methods based on analysis of 
variance are not." (McGill [:I 9541, p. 107). Nevertheless, "It would seem 
that information theory effectively corresponds to a nonparametric analysis 
of variance." (Miller [1954a], p. 41 1). 

There is no reason why the above analysis cannot be extended to more 
dimensions than three, and McGill [1954] has carried this out in some 
detail. There is little reason to reproduce it here. I t  should be mentioned, 
however, that as with sequential dependencies in the source, the amount of 
data needed and the number of calculations required mount sharply as the 
number of dimensions is increased. 

Statistical Tests and Estimations of Entropy. In  addition to construct- 
ing models, the behavioral scientist, unlike many physical scientists, must 
confront the difficult statistical problem of testing and using his model when 
the only data available are from comparatively small samples. His use of 
information theory is no exception to this rule, so we turn now to that 
incompletely resolved problem. 

Let us suppose that a distribution P (i) governs the selections of the n 
alternatives 1,2,. . . ,n, and let us suppose that a sample of N independent 
observations of selections yields N(i)  cases of alternative i. The true entropy 
is, of course, 

while 

is the estimator of the entropy obtained by replacing each P(i) by its 
maximum likelihood estimator N(i)/N. Miller and Madow [1954] have 

shown that if the p (i) are not all equal, v % ( ~ - f i )  has a normal limit- 
ing distribution with mean 0 and variance 

A 

If, however, p (i) = 1/n for every i, then (2N/log,e) (H- H )  has a chi-square 
limiting distribution with n- 1 degrees of freedom. 
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They point out (also see Miller [1955]) that if small samples are used 
to estimate the entropy there is a bias which can be corrected for by the 
following theorem : 

where E (i?) is the expected value of H and 0(1/N3) denotes terms of the 
order of 1/N3 or smaller. They also establish a similar expression for the 

A 

variance of H, but as it is fairly complex I shall not reproduce it here. 
For the case of equally likely alternatives, Rogers and Green [I9551 

h 

have developed an exact expression for the expected value of H, namely, 

The Miller and Madow approximation in the same case reduces to 

A (log2e) [n2 + 6 N(n-i) - 1.1 
E (H) = log2n - 

12N2 
9 

which, of course, is much simpler. Rogers and Green point out that for 
N r  n the two give nearly the same results, but that for N < n, " . . . the 
Miller-Madow formula . . . becomes increasingly less accurate and (their 
formula) becomes more easily computable." (Rogers and Green [1955], 
p. 103). They also present a similar expression for the variance which I shall 
not reproduce here. Tables are given of the mean and variance in the equally 
likely case for small values of N and n (they use the symbol K for what I 
have called n). 

Miller [1955] has also treated the problem of transmitted information, 
i. e., of contingency tables having r stimulus alternatives and s response 
alternatives. Let the three probability distributions be denoted by p (i), 
p (j), and p (i,j), and let the observed sample frequencies from a sample of 
size N be denoted by N(i), N(j), and N(i, j). The transmitted information, 
T, is of course given by 
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A 

Let T be the estimator which is obtained by replacing each p(i)  by its 
maximum likelihood estimator N(i)  IN. Define : 

I t  is known from Wilks' [1.935] likelihood-ratio test of independence that 
-2 log, h has the chi-square distribution with (r- 1) (s- 1) degrees of 
freedom. I t  is not difficult to show that 

A 

hence 1.3863N'r has a chi-square distribution with (r- 1) (s- 1) degrees 
of freedom under the null hypothesis T = 0, i. e., when the stimuli and the 
responses are independent. 

In the same paper, Miller showed that 

and so it is possible to correct for small sample bias. He suggests that N 
should be at  least 5rs in order to make estimates of the information trans- 
mitted. 

McGill [1954] has extended some of the above results to the multivariate 
case. First, he observes that: 

y is independent of (u,v) T(u,v;y) = 0 
y is independent of v 
y is independent of v when u is held constant Tu (V ;Y) = 0 
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The last two conditions each imply 

or, in words, v is not involved in the transmission between u and y when 
either of the two conditions holds. 

There are, of course, analogous statements for the symbols u, v, and y. 
To test the hypothesis that any of the T's are zero, McGill uses Miller's 

result relating independence with the likelihood-ratio test. One obtains 

A 

has approximately 

with 

(UVY-1)-(U-1)-(V-1)-(2'-1) 
(U- 1) (Y- 1) degrees of 
(V- 1) (Y- 1) freedom 
Y(U- 1) (V- 1) 

where U, V, and Y are the number of elements in the ranges of u, v, and y 
respectively, and N is the size of the sample. 

He shows that if the null hypothesis 

is true, then T(u;y), T(v;y) and Ty (u;v) are asymptotically independent; 
h 

thus, as an approximation, the corresponding T's can be tested simultane- 
ously for significance under the null hypothesis. 

McGill presents an interesting example which shows very graphically 
that ". . . we cannot decide whether an amount of transmitted information 
is big or small without knowing its degrees of freedom." ([1954], p. 1 14). 



SECTION TWO 

APPLICATIONS TO BEHAVIORAL PROBLEMS 

THE APPLICATIONS of information theory, and its indirect influences in 
substantive areas, are not easily summarized and evaluated. Besides the 
unambiguous applications which can be cited, information theory has 
subtly influenced the thinking of many behavioral scientists. Not only has 
it affected their analysis of certain kinds of data, but also their choice of 
experimental problems. Such influences cannot be succinctly described or 
tabulated. 

One is, therefore, practically forced to confine his attention to the pub- 
lished papers where information theory has been explicitly employed. But 
in most of the behavioral areas these articles have been sporadic, and they 
hardly present a clear pattern.(*) Thus, I am more or less forced to confine 
my attention to the two behavioral sciences in which these publications 
have been especially numerous and the patterns are fairly clear: psycho- 
physics and psychology. (7)  

The importance of information theory in psychology was realized in the 
late forties, only a year or two after Shannon's now classic paper was 
published. This recognition was both symbolized and accelerated by a 
paper published in 1949 by Miller and Frick. They observed that ". . . [a] 
psychologist's experiments usually generate a sequence of symbols: right 
and wrong, conditioned and unconditioned, left and right, slow and fast, 
adient and abient, etc." (p. 314). Moreover, very many experiments are 
of the stimulus-response type where the stimuli form one sequence and the 
responses another. Generally, the procedures used to analyze such data 
ignore the sequential relations among the responses (usually, though not 

(*) Biology is to some degree an exception. Much of the application to biological 
problems has stemmed from the interest of Quastler, who has gathered together a good deal 
of the work in one volume (1953). 

(t) Much of the material we shall discuss here has been summarized by Miller [I954 a, 
19561 in somewhat less detail. Hick [1954] has also discussed the impact of information 
theory in psychology, and other surveys of applications can be found in Patton [1954] 
and Bricker [1955]. 
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always, sequential effects in the stimuli are experimentally eliminated 
by randomizing procedures). Ignoring the sequential information, 
they pointed out, is tantamount to assuming the independence of 
successive responses. They did not imply that psychologists felt that 
this was a reasonable assumption, but only that many standard statistical 
techniques are not really suited to analyze such data. An exception, 
of course, is the use of contingency tables to study temporally 
ordered pairs of responses (digrams) and the use of contingency 
measures to characterize the degree of association between the arguments 
of the table. Miller and Frick then outlined certain aspects of information 
theory and proposed that the information measure be employed in such 
situations. As Klemmer and Frick pointed out in a later paper, "The 
[information] measure may be applied without logical difficulty to any 
situation in which one is willing to identify the members of the stimulus 
and response classes and make some statements about their probability 
distributions. Whether or not the measure is useful in the analysis of human 
behavior remains to be proven. Early results from its application are, how- 
ever, encouraging. . ." ([1953], p. 15). 

There are difficulties, for as Miller and Frick pointed out, at least these 
two serious a priori limitations exist on the applicability ofinformation theory : 

1. Sequential responses which are generated while learning is occurring 
do not form a suitable sample from which to estimate the probabilities that 
are needed: the assumptions of learning and of a stationary response time 
series are incompatible. 

2. The difficulty of obtaining adequate samples to estimate probabilities 
increases sharply with an increase in the length of dependencies in the 
response sequence. In fact, it is completely out of hand beyond three step 
dependencies. 

Related computational difficulties also arise with large amounts of 
sequential data. Basically, however, this problem is less serious than the 
sampling one, since computation machines are available that are ideally 
suited to repetitious calculations. In addition, special equipment, such as 
that described by Newman [I951 a], can be constructed to carry out 
information-type analysis. In practice, however, most computations will 
be done by hand, so tables of log,p and plog,p are useful to have. Several 
have been published : Newman [I951 a], Dolanskjr and Dolanski [1952], 
and Klemmer [1955]. 

For the five years immediately after the publication of the Miller-Frick 
paper there was a steady increase in the number of psychological papers 
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employing information theory. In 1955 it seemed to reach a plateau provided 
we count the separate contributions in Quastler's Information Theory in 

Psychology. (Actually, not all should be counted, since some summarize 
already published studies, so the trend may have turned down somewhere 
in 1954 or 1955.) But even if it reached its peak in 1951, it will certainly 
not vanish completely in the near future; hence, any summary I attempt 
here is bound to be out-of-date before it can be very widely read. However, 
there is some pattern to the publications and a summary may serve a func- 
tion, so long as it is remembered that it only covers a cross-section of an 
incomplete trend. Excepting the applications of information theory to 
psychological testing,(*) I believe this summary is fairly complete through 
1954. I have not tried exhaustively to survey the contributions in 1955 and 
the first half of 1956 (when the final revisions were completed) ; however, 
since much of the 1955 material appears in Quastler's book, a quick and 
adequate view of the most recent work is readily available. 

Four features of the applications seem worth noting here: 

1. Few of the applications are to problems traditionally classed as 
communication; this was predicted by Miller and Frick. 

2. The applications do not generally use the fundamental theorem 
relating channel capacity, the statistical structure of the source, and the 
transmission rate. I know of only two limited attempts to characterize 
directly the channel capacity of a human being - other than by observing 
the actual rates of transmission that can be experimentally achieved. 

3. The theory has not really generated new problems to be studied 
in psychology. Rather it has caused re-examination and reformulation of 
old problems. In  some cases (see Chapter 10) it has permitted several 
apparently disparate effects to be included within a single theoretical 
framework. The fact that old problems are being treated does not, unfor- 
tunately, mean that new data are not needed. A published experiment 
rarely fulfills the exact conditions another worker would like. More impor- 
tant, the isolation of sequential dependencies requires a new analysis of 
the raw data, and it is very rare indeed to find extensive publications of 
raw data. 

4. Like a new mistress, information theory seemed a t  first elusive and 
full of promise. She was justification for both intensity and irresponsibility: 

(*) See Cronback [1952, 19531, Glaser and Schwarz [1954], Hick [1951], Lord [1954], 
and Willis [1954]. 
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a thing of perfection requiring little more than some experimentation to 
bear fruit. With the passing years, a more "mature" if less exciting rela- 
tionship has developed. A reading of Licklider's [1954] transcription of a 
conference on information theory conveys this to some extent, and Cronbach 
[1955] has systematically presented some sobering views on the use of 
information theory in psychology. Although I shall try to summarize some 
of his points, I would suggest that his paper be read by anyone interested 
in applications to psychology. 

Cronbach points out that many psychologists have accepted information 
theory, particularly the information measures, without adequate scrutiny 
of its underpinnings and relevance to the particular problem under consider- 
ation. Entropy is by no means the only measure one can use to summarize 
the relationship between two variables. And since it effects a very serious 
compression of the data, it is well to check that one is throwing away what 
one intends to and keeping what one wants. This amounts to saying that a 
logical rationale must be given for its use. Let me cite three general types 
of examples where the information model may not be as appropriate as 
some other models. First, some stimulus dimensions possess natural metrics, 
and if the subjects are thought to react, however crudely, to these metrics, 
then probably the entropy measure should not be used, since it completely 
ignores all metric information. Second, the information model for noisy 
systems is concerned with limiting behavior - with infinitely long messages 
and delays. Subjects invariably deal with finite messages and introduce 
comparatively short delays. I t  does not immediately follow that the model 
gives bad approximations for such cases, but it does suggest that caution is 
needed. Third, the model supposes that the destination is aware of and uses 
a good deal of the available statistical information about the source and 
the noise. In many actual and experimental situations, subjects have only 
the crudest knowledge of these probabilities, and even when they do know 
them, there is no a priori certainty that they will use this information. For a 
detailed discussion of these points, see Hake [1955 a]. The model for statistic- 
al decision making under uncertainty (used in the statistical, not information 
theory, sense) may often be more appropriate than the information theory 
model. 

With regard to using information theory for error analysis, Cronbach 
makes at  least two points which are important. Information measures are 
completely insensitive to constant errors, they are only concerned with 
variable ones! Thus, if a subject continually interchanges responses to a 
pair of stimuli, information theory will treat this as error free behavior - 
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as indeed it is in one sense. Yet, for many purposes it is these constant errors 
that are of greatest interest. Second, information theory is concerned only 
with the existence of an error; it does not assign any value to it. When there 
is a metric involved, one often measures the seriousness of the error in terms 
of that metric - say, as the square of the distance. But even when no metric 
is available, different errors can be judged as having differential importance. 
For such problems, a notion of utility has to be introduced and the tech- 
niques of statistical decision theory, rather than information theory, seem 
appropriate (see Van Meter and Middleton, [1954]). 

Before turning to the empirical studies themselves, a few words on how 
this material might have been organized. The theory introduces methods 
for dealing with three central concepts, and the applications could have been 
categorized according to which facet of the theory they employ: 

1. Sequential dependencies. This would include all the applications 
which use information theory to deal with sequential data, as proposed by 
Miller and Frick. Chapters 7 and 13 are illustrative of this approach. 

2. Noise. The applications, such as those of Chapters 10 and 11, which 
use the formalism of noisy communication to cope with problems where 
stimulus and response are not perfectly correlated, e. g., where there are 
errors of some type, would fall into this category. 

3. Capacity and transmission. Those studies which employ the central 
theorems of information theory concerning rates of transmission and capacity 
would be placed in this category. Examples are Chapter 9, and, to some 
extent, Chapter 10. 

7. T H E  ENTROPY O F  PRINTED AND SPOKEN LANGUAGE(*) 

N-Grams of Printed English. A problem that has intrigued a number of 
authors, including Shannon, is the estimation of the entropy of printed 
English (or any other language, for that matter), i. e., the estimation of 
the average number of bits per letter in a written passage. Put another way, 
the problem is to characterize the average sequential dependencies in the 
written language. If we assume, as may be approximately true, that the 
English in one book or article is the typical output of a stationary source - 
the author - then in principle all we need do is calculate P ( j  I i,,i,, . . . iN) 

(*) See Miller [1954 b] for a general discussion of the role of information theory in 
the study of speech. 
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or all letters j and for all N-tuples of letters and blanks which might precede 
. From this we could then compute 

where bi denotes a typical block of N-1 successive letters preceding j. 
Were these FN known, then we could estimate the entropy of the sample to 
any desired accuracy using the fact that 

H = lim FN. 
N-tm 

The difficulty becomes apparent when we realize that a 27 letter alphabet 
yields 27N possible N-grams. Of course, many of these are impossible in 
English, but even were we to assume that, say, only one per cent were 
possible, there would still be 1,968 cases to be examined with N = 3, and 
53,144 for N = 4. 

Nonetheless, FN can be computed for very small values ofN, and Shannon 
[1951] reports that 

F, = 4.14 bitslletter 
F, = 3.56 bitslletter 
F, = 3.3 bitslletter. 

His calculations are based on the letter, digram, and trigram frequencies 
which were prepared for coding work (Pratt [1942]). Not only is it practi- 
cally impossible to carry this approach much further, but Shannon suggests 
that F,, and all higher F's, may be liable to some error since many of the 
N-grams in the sample will bridge across two words. I t  is clear that other 
approximate techniques are necessary. 

Three proposals have been made. The first employs, in one way or 
another, the built-in knowledge of English statistics in English-speaking 
people. The second attempts, by an assumption, to by-pass the sampling 
difficulties of the direct procedure discussed above. The last utilizes the 
known empirical distributions of English words, though ignoring the statis- 
tical dependencies among words, to determine an upper bound on the 
entropy. We shall discuss the proposals in this order; however, first let us 
examine an analogous N-gram calculation for spoken language. 

N-Grams  of  Spoken Language. As I indicated earlier, there is every 
jreason to suspect the entropy of spoken language, in bits per sound, is a 
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more basic statistical description of language than the entropy of the 
corresponding written language. The former studies have lagged behind 
the latter - probably because they are more difficult. There are two pub- 
lished papers that I know of: Cherry, Halle, and Jakobson [1953] and Black 
[1954]. In the former a long sample of Russian prose was analyzed into 
42 phonemes and the following entropy estimates were obtained: 

Black estimated F,  and F,  for English from a sample of one and two 
syllable words; however the sample possessed certain peculiarities making 
it not statistically representative of English in general. Black felt the fact 
that it contained only root forms, present tenses, etc. was a serious draw 
back. 

Were the 41 phonemes in the sample independent and equiprobable, 
the information transmitted per sound would be 5.35 bits. From the actual 
simple and digram frequencies, Black obtained : 

The range arises from the fact that he calculated separate estimates for each 
class of words having the same number of syllables and the same number 
of sounds per word. He noted the following trend: the sounds of the shorter 
words transmit more information than those of the longer ones. 

For exactly the same reasons as with printed language, it is unlikely 
that this approach can be extended beyond trigrams, so we turn to the other 
attacks that have been made on printed English. 

Estimates Based on Partial Deletion of Messages. In his original 
report, Shannon (Shannon and Weaver [1949], pp. 25-26) states that 
"The redundancy of ordinary English, not considering statistical structure 
over greater distances than about eight letters, is roughly 50 per cent." 
(The definition of redundancy was given in Chapter 3). In a later paper 
[1951] he cites his original estimate as about 2.3 bitslletter. He arrived at 
this figure using two techniques. First, he developed approximations to 
English using the published frequencies, digram, and trigram frequencies 
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of letters and the frequencies and digram frequencies of words to generate 
approximations to English. The redundancies in each case were calculated; 
in the last two cases some extrapolation was required, since the tables were 
not complete. Second, he selected some unexceptional passages of English 
from which he randomly deleted a certain percentage of the letters. His 
subjects(*) then attempted to reconstruct the original passage from the 
mangled one, and he found that the letters could be restored with high 
accuracy when 50 per cent were deleted, from which he concluded that 
the redundancy must be at least 50 per cent. 

Chapanis [1954] carried out roughly the same study, but his was an 
extensive and careful experiment using 91 subjects and 13 passages of 300 
units (letters, space, and punctuation marks) each. Deletions were made, 
with no indication where they occurred, in both random and regular 
fashion, with 10, 20, 25, 33.3, 50, and 66.7 percent removed. His results 
are interesting, especially since they differ somewhat from Shannon's. At 
best one would conclude from these data that one-quarter of a passage can 
be deleted with a' fair degree of recovery, but with a 50 percent rate of 
deletion the percentage of items restored is only about 20 percent, and of 
these only about one tenth are correct. Even when only 10 percent of the 
passage is deleted, only 80 percent of that supplied by the subjects is correct. 
Both the passages and the subjects showed considerable variability. Some 
passages were comparatively easy for most subjects to supply the missing 
letters and marks, others, particularly those judged easiest to read by conven- 
tional criteria, were uniformly more difficult to complete. The performance 
of the subjects was highly correlated with verbal and mental ability as 
measured by standard tests. 

With respect to the disagreement between these results and those Shan- 
non mentioned, Chapanis writes: "Dr. Shannon and I now agree that S's 
can probably reconstruct from about 80% to 100% of deleted text under the 
following special conditions: (a) The amount deleted is 50%; (b) The 
deletions are made by taking out every other space, letter, or punctuation 
mark (other kinds of 50%, regular deletion patterns are more difficult to 
reconstruct) ; (c) The S is told, or can easily discover, the deletion pattern; 
(d) The S has a high amount of verbal intelligence. 

"The results of the present study are valid under these conditions: 
(a) The S is provided with no supplementary information about the amount 
or kind of deletion; (b) The total context of the situation is such that S 
cannot or does not discover the deletion patterns." ([1954], p. 508). 

(*) Mostly he and his wife according to Chapanis [1954, p. 4961. 
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The obvious variant in which the deletions, either random or regular, 
are indicated by dashes appears not to have been run. 

In  any case, these results are certainly no more than a lower bound on 
the redundancy of a language, and probably not a very good one a t  that. 
For although the redundancy may be 50% or higher according to other 
estimates, the removal of 50% of the letters gives the subject a good deal of 
freedom to reconstruct the message. Once he is on the wrong track, say 
in the first two or three missing letters, then everything else is almost bound 
to be in error up to the point where a continuous sequence of three or four 
letters is not deleted. 

Shannon's  Upper and Lower Bounds. In his 1951 paper, Shannon 
carries his estimation procedures further by developing both upper and 
lower bounds for the entropy, and these data indicate that the redundancy 
may be nearer 75 per cent than 50 per cent. He selected 100 samples of 
English text, each consisting of 15 letters. A subject was required to guess 
at the first letter of a passage until he obtained it correctly. Knowing it, he 
guessed at  the second until it was obtained. In  general, knowing N- 1 letters 
he guessed a t  the Nth until he was correct. The data may be presented as a 
table having 15 columns and 27 rows (26 letters and a blank). The entry 
in column N and row S is the number of times subjects guessed the correct 
letter on the sth guess given that they knew the N- 1 preceding letters. A 
small portion of the table is reproduced: 

The column marked 100 was obtained by presenting the subject with 99 
letters from a 100 letter passage. The data for columns 1 and 2 were pre- 
pared from published word and digram frequencies which are based on far 
larger samples. 

To  use these data, Shannon introduced the notion of an ideal predictor 
who, knowing@ (b,, j), i. e., the probability of all N-grams, would select 
lettersj in order of decreasing probability for the given 6,. Thus each letter 
of a message can be replaced by a number between 1 and 27 which tells 
how many guesses will be needed before the correct letter is obtained. For 
an ideal predictor this sequence of numbers will contain the same informa- 
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tion as the message, since one can be constructed from the other, but it 
has the added feature that there will be limited statistical dependencies 
among the numbers, since the difficulty of one will not generally determine 
that of the next. Hence, computing the entropy of the number sequence is 
not difficult, and it can be used to estimate the entropy of the language. 

The frequency of the number k in the reduced text will, of course, be 
given by 

where the sum is taken over all (N- 1)-grams bi and over those j's such that 
i t  results in the kth largest probability for the given 6;. 

Shannon then shows that the Nth order entropy, FN, is bounded by 

Using the data described above, and smoothing them, Shannon calculated 
upper and lower bounds for. N = 1,2,. . . ,15,100. 
Some of the values are: 

Upper and Lower Bounds on F.v 

When both sets of points are plotted for N = 1,2,. . .15, there still remains 
some sampling error, but smooth curves can be faired through the points 
reasonably well. 

I t  should be noted that there is a considerable drop in both bounds 
between N = 15 (at which point the curves are nearly flat) and N = 100. 
Whether or not this is meaningful is difficult to say, but, as we shall see, 
none of the other estimates suggests that the entropy is as low as 1.3 bits/ 
letter; however, it must be kept in mind that all of these will be upper 
bounds, and how much too large they are is not known. 

upper bound 
lower bound 

The Coefficient of Constraint. Newman and Gerstman [1952] ap- 
proached the problem in another way which does not depend upon "built- 
in" knowledge of English statistics, but which does employ an as yet un- 
proved assumption. They define 

4.03 3.42 2.7 2.1 2.1 1.3 
3.19 2.50 1.7 1.0 1.2 0.6 



and 

The Theory of Selecti~~e Information and Some of Its Behavioral Applications [59] 

where i and j are letters in a passage which are separated by N- 1 others. 
That is, H(1,N) measures the average statistical dependence of a choice j 
upon the choice i which was made N letters earlier. As N becomes large it is 
clear that this dependence decreases. A measure of its magnitude is 

They then define the quantity 

which is called the coefficient qf constraint. It is a quantity that is 1 when the 
Nth selection is uniquely determined by the first, and 0 when the Nth is 
independent of the first. Since only pairs of letters are involved in these 
quantities, it is comparatively easy to determine them for a given sample 
of language. 

Using a 10,000 word sample from the Bible, they obtained the following 
data : 

1 2  3 4 5 6 10 

and a letter frequency entropy of 4.08, which is only slightly different from 
the 4.14 obtained by Shannon. A plot of these data on log-log paper is 
approximately linear witha slope of -2.0, or, in other words, D(N)  = 1/~11'~, 
approximately. 

The problem now is whether FN can be estimated from data for D (N)  . 
The answer is "yes," provided it is true that 

This relation is certainly true when N= 2. Indeed, the equality holds then. 
It is also true for any N such that the symbols are independent, for then 
D (N) = 0 and FN= FN-, . They point out, however, that no proof of the 
assumption has been found, and they add without further elaboration the 
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cryptic comment ". . .and there are limiting cases in which it is proved not 
to apply." ([1952], p. 120). In  any case, if it is assumed, one has 

where the empirically grounded assumption that D (i) = l / i2  has been 
used. In  the limit H = lim FN = H(1)/2 ,  which gives an upper bound, 

.V+ m 

if the two assumptions are correct, of 2.04 bitslletter. In  addition, for 
JV = 1,2,. . . ,15 they computed H ( l )  ("N+ 1) /2"Nand compared these points 
with those obtained by Shannon as an upper bound. This curve seems to 
fit the points as well as Shannon's faired curve. 

Distribution of Words to Estimate Letter Entropy. The third, and 
last, major approach to setting bounds on the letter entropy rests on a 
computation of word entropies which is based on known frequencies of 
word use in the language. This entropy, when divided by the average word 
length, affords an estimate of the letter entropy which is only an upper 
bound, since the technique, based as it is only on word frequencies, complete- 
ly ignores the redundancy due to inter-word influences. 

Long before information theory, people had determined the frequency 
of usage of various words, and it was Zipf [1949] who emphasized(*) that 
if we rank words 1,2,. . . r,. . . in order of decreasing frequency, then the 
frequency of use of a word is simply proportional to the inverse of its rank. 
That  is, the probability pr that a randomly selected word is of rank r is given, 
approximately, by 

Pr  = klr, 

where k is a proportionality factor independent of r. There is a certain am- 
biguity as to just how many ranks there are and certainly if we consider all 

(*) This empirical observation was most systematically explored by Zipf, but it had 
been noted in certain cases by earlier authors [see Zipf, 19491. 
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possible English words the approximate law fails for very high ranks. The 
value of k is chosen so that the empirical relationship, known as Zipf's 
"law," holds for the lower ranks, and the size Nof  the vocabulary is given 
by the condition 

Newman and Gerstman [1952], Miller [I95 1 b], and Shannon [1951] have 
all carried out this computation, but as Newman and Gerstman have pointed 
out, there are certain discrepancies in the results. Shannon obtained N =  
8,727, while Miller, presumably using a definite integral to approximate 
the series, got 22,000, and Newman and Gerstman obtained 12,370 by 
taking into account the discontinuity of the first 100 ranks and approxi- 
mating the rest of the series by an integral. 

Using this distribution, it is then possible to calculate the entropy of 
the independent word selections according to the distribution, i. e., 

Shannon obtained 11.82, Miller 10.6, and Newman and Gerstman 9.7 bits/ 
word. These give estimates of 2.62, 2.36, and 2.16 bitslletter if we take 4.5 
letters to be the average word length. There appears to be a further disagree- 
ment, as was pointed out by Newman and Gerstman ([1952], p. 124). 
Considering the different values of N obtained, the Shannon and the New- 
man and Gerstman results should both be either larger or smaller than the 
Miller result; they are not. 

Another approach to the problem from the point of view of words is 
due to Bell [1953]. He supposes that the space between words is sent 
infallibly and then he observes that the length of a word carries some 
information. "As the simplest example, consider the fact that there are only 
two words of one letter in normal use: the personal pronoun 'I' and the 
indefinite article 'a'. Hence only two out of the 26 single-letter 'words' 
which are mathematically available from the alphabet are admitted to the 
English language, and it follows that when a word of one letter is received 
in English the choice is only 1 out of 2 instead of 1 out of 26. An alternative 
expression of this is that the 'internal information' implicit in the fact that 
the l-letter word is in the English language equivalent to a selection of 1 out 
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of 13 alternatives; and the communication of a selection of 1 out of 13 would 
be regarded as a communication of 3.7 'bits' of information (log, 13 = 3.7), 
so that the average internal information of 1-letter words in the English 
language may be stated as 3.7 bits per letter." ([1953], p. 384). For longer 
words such a detailed analysis is impossible, so Bell formed statistical 
samples from the dictionary. From this he calculated the internal infor- 
mation in bitslletter and obtained : 

NurnberofLetters 1 2 3 4 5 6 7 8 

Internal Information . . . . . . . . ( 3.7 2.2 1.53 1.93 2.36 2.66 2.98 3.21 

This curve was smoothly extrapolated for words longer than 8 letters. Using 
Dewey's word list [1923] to obtain relative frequencies of words of various 
lengths he calculated the weighted average of the internal information and 
obtained 2.1 bitslletter. 

The Role of ~edundanc~ .  Whatever the correct value of the letter entropy 
is, it is clear that it is not much over 2 bitslletter and not much less than 1. 
So the redundancy is somewhere between 50 and 75 per cent. In other 
words, under ideal conditions we could transmit the same information either 
by using a considerably smaller alphabet and keeping the length of books 
and articles the same, or by keeping the same number of symbols in the 
alphabet and reducing sentences and books to from one quarter to one half 
their present length. That our language is not fully efficient in this statistical 
sense presumably results from our need to communicate rapidly and accu- 
rately under adverse conditions, i. e., where there is noise: in the presence 
of other voices, in the wind, at sea, etc. I t  is clear from the little example 
given in Chapter 4 that even a small amount of noise can result in a serious 
drop in the information transmitted - in that case a one per cent chance 
of error resulted in a ten per cent drop in the entropy transmitted. I t  thus 
appears reasonable that if a language is designed to cope with even a slight 
amount of noise, then it must be quite redundant. Of course, when the noise 
level is so high that the natural redundancy of the language cannot combat 
it, other methods are used : Words and even whole sentences are repeated. 
And in such places as noisy factories the vocabulary between two people 
may be reduced to a few words - e. g., to "stop'' and "go." 

An example of a purposeful increase in redundancy is found in the very 
formal language used for air traffic control at an airport. Frick and Sumby 
[1952] have presented a summary of their findings for this language, but 
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without much of the data. They used the technique, introduced by Shannon 
[1951], of having subjects predict the next letter of a message. Using trained 
personnel as subjects they found that the uncertainty of control tower 
language is about 28 per cent that of random sequences of letters and spaces. 
And this, they point out, is a serious overestimation, since in practice the 
operator almost always knows the pilot's situation and therefore certain 
messages are excluded. To  estimate these situational constraints, they 
described hypothetical situations to 100 Air Force pilots and asked them to 
predict the control tower message. Forming equivalence classes of "meaning 
units" and taking into account the imposed grammar of the language, they 
found that the uncertainty was no more than 20 per cent of what it would 
have been had the units been equally likely and randomly selected. The 
overall effect, they estimate, is a redundancy of about 96 per cent. This is 
not an implausible result when one considers the high noise level in both 
the tower and the plane, and the especially low margin of allowable error. 

A similar study of tower-pilot communications at  the Langley Air Force 
base has been presented by Felton, Fritz, and Grier [1951]. (Also see Fritz 
and Grier [1955].) As in the Frick and Sumby work, they divided messages 
into information elements, " . . . a  word or a group of words representing a 
type of information, such as runway assignment, elapsed time, etc." ([I95 I], 
p. 5). They divided the analysis of redundancy into three levels. First, they 
simply took into account the frequencies of the various information elements. 
Second, they determined the predictability within a message. Third, they 
determined the predictability between messages from the observed condi- 
tional probabilities between messages. At the second level, they determined 
the probability of each message and determined the entropy of whole 
messages. This divided by the average number of elements per message was 
taken to be the entropy of each element. A justification of this procedure was 
given. The data were separated into messages originated in the air and at  the 
tower, and the estimated redundancy using each of the three levels was: 

Redundancy 
Level 1 1  2 3 

Air. . . . . . . .35 .72 .81 
Tower . . . . .26 .75 .78 

The authors estimate that if contextual constraints are taken into account, 
as they were in the Frick and Sumby paper, then the redundancy would 
be about 93 per cent, which compares closely with the 96 per cent mentioned 
above. 
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IN THE LAST chapter, I referred to the empirically grounded observation 
(Zipf's "law") that if the words of a natural language are ranked from the 
most to the least common, then thefrequency ofthe rth word is approximate- 
ly inversely proportional to r .  Zipf found that more linguistic data could 
be fit by the more general equation 

where p, is the frequency of the rth word and P and B are constants, B 
being in the neighborhood of 1 for all languages and larger than 1 for 
most. "Although this relation appears with regularity in linguistic data, 
no one has claimed more than a vague appreciation of its cause or signif- 
icance. No one, that is, until Mandelbrot." (Miller [1954], p. 413) 
Mandelbrotls theory and its applications are presented in a series of five 
publications [I953 a, 1953 by 1954 a, 1954 b, 1954 c], and Miller [1954 a] 
has given a very helpful summary of some of it. 

Mandelbrot introduces two basic assumptions which distinguish his 
theory sharply from Shannon's. First, he supposes that a language - like 
all known ones - is built of discrete units called words, i. e., the commu- 
nication is broken into units which are separated by a space. Second, he 
assumes that the transmitter in the communication system encodes and 
the receiver decodes word by word. Even though one could accept these 
as plausible assumptions that are valid for known languages, he defends 
each by a logical argument based upon the assumption that language 
must be designed to combat noise. In one paper [I954 a] he shows that 
the discrete character is needed, and in another [1954 c] he shows how 
the space and the word by word encoding limit the effects of noise to the 
word within which the error arises. The redundancy within the word is 
used to combat this noise. 

"Although it may seem trivial, the introduction of the space between 
words is the crux of Mandelbrot's contribution and the main feature that 
leads him to results different from Shannon's. In Shannon's problem, the 
entire message is remembered and then coded in the most efficient form 
for transmission. In Mandelbrot's problem, the message is remembered 
only one word at a time, so that every time the space occurs the trans- 
mitter makes the most efficient coding he can of that word and then be- 
gins anew on the next word. Obviously, a transmitter of the kind Shannon 
studied will be more efficient, but one of the kind that Mandelbrot is 
studying will be more practical." (Miller [I954 a], p. 414). 
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Let us assume that the words are ordered by decreasing frequency of 
occurrence; denote them by W,, W,, . . . , WR. Let the corresponding 
frequencies of occurrence be p,, p,, . . . , pR. Suppose that to each word 
there is a cost Cr for using it - we do not specify what we mean by cost 
except that it can be summarized by a real number. I t  might be the number 
of bits required to transmit it, or the delay, etc. The first problem Mandel- 
brot attacked - he calls it the "direct problem" - is to find what the 
costs Cr should be so as to result in the least costly transmission of messages 
assuming word-by-word coding and the known frequencies fir. This con- 
dition yields, as a first approximation, 

where [x ]  denotes the smallest integer greater than or equal to x. A better 
approximation is 

Cr = [l0gM (r + m, + logM , 

where M, m, and d are constants independent of r. Observe that the cost 
depends upon the ranking, but not upon the details of the probability 
distribution. 

Next, we turn to what Mandelbrot has called the "inverse problem." 
For this problem he assumed the words are given and their costs are fixed, 
and the task is to determine the frequency distribution p, such that some 
economy criterion is met. He has given several criteria which all lead to 
essentially the same result. 

1. Let us suppose that the average cost per word, 

is fixed in advance, and we look for the best frequency distribution to 
transport information in Shannon's sense. That is, we maximize H = 

-Zprlog fir subject to the above constraint. (This problem is formally 
identical to Boltzman's problem in statistical mechanics: to find the maxi- 
mum entropy for a given average energy.) The following conditions are 
necessary and sufficient to solve the problem: 
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The third condition determines P' and the fourth B, provided that C <log R. 
Note that the cost Co of the space does not enter here. 

2. A second condition, which is a trivial modification of the first, is to 
hold H fixed and choose the distribution so as to minimize the average 
cost C. The only resulting difference is that B is determined by the value 
of H, provided H <logR. Again the value of Co is irrelevant. 

3. A more interesting variant occurs when you allow R and C to be 
free and minimize the average cost per unit of information: i. e., mini- 
mize 

subject to the constraint L'p, = 1. As before, Mandelbrot has shown that 

but now B is determined by the value of C,, and so both the value of C 
and of H are fixed by the choice of C,. 

Finally, we turn to what Mandelbrot has called the "secrecy problem." 
He supposes that words are composed of letters L,, L,, . . . , LG, where C 
is much smaller than R. Let the letters be labeled in order of decreasing 
frequency, denote the frequency distribution by q,, and write the cost of 
the ith letter as ci. The cost of a word is assumed to be given by the sum of 
the costs of its component letters. 

"The best possible of all weighed vocabularies from the point of view 
of the secrecy encoder is the one in which the most economical code is 
also unbreakable. The code must then be a random sequence of elements, 
space included, and the enemy must either go to word relationships, that 
is go beyond our approximation, or try all keys, the number of which is 
astronomical." ([1954 b], p. 13 1 .) His requirement is that an unbreakable 
random sequence of letters transport information for the smallest possible 
cost per unit of information. This is similar to condition 3 of the inverse 
problem, differing however in that there is no element corresponding to 
the word space. Formally, the condition is that 
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C q i  ci -x qi log qi 

should be a minimum subject to the condition that Z q i  = 1. From this 
requirement it can be shown that the word distribution must be 

as before, but with the added conditions that B > 1 and R = a. The latter 
condition follows from the requirement of a random sequence of letters to 
sustain secrecy. I shall discuss the condition B > 1 a little later. 

Let me summarize: To attain the least costly transmission when words 
are ranked in order of decreasing frequency, then 

To  attain 1) the maximum information transport with the average cost 
per word fixed, or 2) the minimum average cost per word with the 
information transported held fixed, or 3) the minimum average cost per 
unit of information, then the distribution of the words should be 

If we combine these two conditions, taking into account the fact that 
statistical fluctuations in data will smooth over the steps of the former 
equation, we obtain 

ti = P ( r  f m)rB, 

which Mandelbrot has called the "canonical curve." Observe that if 
m = 0,  this is the generalized Zipf law. 

As Mandelbrot points out, the fit of Zipf's law with B = 1 to most 
language data is good only in the central range and is in error for the 
most frequent and the least frequent words. By choosing values of B and 
m different from 1 and 0 he has been able to achieve far better fits. 

The condition B > 1 which results from the secrecy criterion has been 
found to be met by most natural languages. Zipf called those with B > 1 
L C  open vocabularies" and those with B < 1 "closed vocabularies." Most 
languages with closed vocabularies are in some way peculiar or special. 

Clearly, Mandelbrot's theory, like Shannon's, is normative, but it is 
much more closely related to a specific empirical field than is Shannon's. 
Thus the question must be raised as to exactly what Mandelbrot has shown 



[68] The Theory of Selective Information and Some of Its Behavioral Applicationr 

and what it means for linguistics. "He says that if one wants to commu- 
nicate efficiently word-by-word, then one must obey Zipf's law. There is 
a strong temptation to reverse the implication and to argue that because 
we obey Zipf's law we must therefore be communicating word-by-word 
with maximal efficiency." (Miller [I954 a], p. 41 5). Of course, Miller goes 
on to point out that much other evidence exists - such as the redundancy 
data discussed in the last section - to suggest that this reversed implica- 
tion is false. I t  remains to be shown whether marked deviations in certain 
directions from perfect efficiency result in only slight deviations from the 
canonical curve. 

I t  should be pointed out in connection with Mandelbrot's work that 
a totally different statistical explanation for Zipf's law has been offered 
by Simon [1955]. His model is not at all concerned with the transmission 
of information, but is rather of a more traditional statistical type. I t  has 
the advantage of suggesting the statistical process whereby the many 
phenomena other than word distributions are caused to satisfy Zipf's law. 
For example, Zipf noted that the distribution of cities by population and 
of incomes by size also satisfy roughly the same relationship. But many 
doubt that Simon's process accounts for word distributions. Nonetheless, 
using words in a book as the prototype, let f (r,k) denote the number of 
different words each of which has occurred exactly r times in the first k 
words of the book. Simon then makes the following two assumptions con- 
cerning the selection of the (k + 1)" word. 

1. The probability that the (k+l)" word is one which has already 
appeared exactly r times is proportional to the total number of occur- 
rences of all the words which have appeared exactly r times, i. e., it is 
proportional to rf(r, k) . 

2. The probability that the (k+ I ) "  word is a new word, i. e., one 
which has not already occurred in the first k words, is a constant a. 

"If this process correctly describes the selection of words, then the 
words in a book cannot be regarded as a random sample drawn from a 
population with a prior distribution." (Simon [1955], p. 427). 

From these assumptions, he shows that for a large sample, the prob- 
ability p, of words of rank r is given by AB (r,p + l ) ,  where A and p are 
constants, and B (r,p + 1) is the Beta function of r and p + 1, i. e., 
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where r is the Gamma function. This, he shows, is very similar to Zipf's 
empirical law and it gives good fits for much of the data. 

He explores modifications of this model which lead to essentially the 
same results and which appear to be more reasonable assumptions for the 
generation of word frequencies, but to examine this in detail would take 
us too far afield. 

In closing this section, let me quote from Simon (p. 435) concerning 
the two alternative explanations of word frequencies: 

"A very different and very ingenious explanation of the observed 
word-frequency data has been advanced recently by Dr. Benoit Mandel- 
brot [1953]. His derivation rests on the assumption that the frequencies 
are determined so as to maximize the number of bits of information, in 
the sense of Shannon, transmitted per symbol. There are several reasons 
why I prefer an explanation that employs averaging rather than maxi- 
mizing assumptions. First, an  assumption that word usage satisfies some 
criterion of efficiency appears to be much stronger than the probability 
assumptions required here. Secondly, numerous doubts, which I share, 
have been expressed as to the relevance of Shannon's information measure 
for the measurement of semantic information." 

9. THE CAPACITY OF THE HUMAN 

BEING AND RATES OF INFORMATION TRANSFER 

I N  RECENTYEARS it has proved necessary to construct a variety of complex 
information systems in order to deal with certain military and industrial 
problems. These systems typically receive a tremendous amount of raw 
information from diverse sources that must be filtered, recoded, and cor- 
related into what may be called a model of some situation of interest. 
The model must be sufficiently simple so that a person can grasp it com- 
pletely, and sufficiently accurate so that it can lead him to useful decisions. 
For example, an air defense system receives raw information from radars, 
spotters, airline schedules, weather reports, fighter readiness reports, etc. 
All of this must be reduced to a simplified model of the enemy attack, 
the defense facilities, and the defensive response, so that a commanding 
officer can continuously know the situation with only a few seconds' delay. 
The officer must make and modify his defensive decisions on the basis of 
such a model. I t  is clear that much of this processing - especially where 
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speed and accuracy are needed - can and should be reduced to machine 
operations, but, with our present technology, there are certain steps which 
are far more simply and effectively carried out by a person than by a 
machine. For example, one of the first steps in an air defense system, and 
one which is not easily duplicated by a machine, is the isolation and 
transfer of pertinent information from a radar scope face. From all the 
random noise and background reflections on the scope an operator must 
single out those "blips" which represent aircraft. This he must introduce 
into the rest of the system, say, as a coded telephone message. The question 
arises as to how much information he can process per second over a sus- 
tained period. 

I t  is clear that for any specific problem of this type, an answer can be 
obtained by direct experiments on the trained personnel using the equip- 
ment. On  the other hand, one wonders whether it is necessary to study 
each new situation separately, or whether the pertinent variable is the 
amount of information in bitslsec which will be presented to the operator 
as compared with the maximum amount he can handle. 

That is, can we treat a human being as a channel and so determine 
a channel capacity for him? If this were possible, it would certainly simplify 
the design problem, for it is generally not too difficult to determine the 
rate of the information flow in the machine components of a system. The 
question of whether it is useful to treat men as channels in certain situa- 
tions remains at  best an open problem, and there are some, equipped 
with strong arguments, who believe that it is an illusory hope. The most 
direct printed attack has been offered by Hake [I955 b]. The gist of his 
argument is that the information measure is impartial to many aspects 
of the stimulus set, e. g., to metric relations among the elements, to whether 
culturally assigned names exist for the individual stimuli, etc., and yet 
all sorts of experimental evidence suggest that subjects respond to these 
characteristics of stimuli. "It appears evident to me that a measure of 
information transmitted is meaningless unless accompanied with an oper- 
ational definition of the experimental context. The possibility exists that 
we may discover invariant limits to information measures of performance 
within a single type of operation which I have described and across several 
stimulus-response systems. I t  appears unreasonable to describe such limits 
as the 'channel capacity,' however, when with a little thought and anal- 
ysis the limit can be ascribed to some reasonable and known physiological 
limitation." ([1955 b], p. 253). 

This debate, however, is not really my question here; I shall only 
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recount some of the studies which have been executed to determine the 
human channel capacity under the dubious assumption that a person can 
in fact be usefully considered as a channel. 

Considering the theory presented in Section I, two procedures to 
estimate the capacity seem possible. First, estimate the channel capacity 
from whatever physical, physiological, and psychological facts that are 
known to be relevant to the type of transmission being employed. Second, 
by varying certain variables and employing diverse coding schemes, find 
the maximum amount of information that a person can be caused to handle. 
This, by the fundamental theorem of information theory, affords a lower 
bound on the capacity. Roughly speaking, the first procedure has resulted 
in upper bounds of the order of 10,000 bitslsec, while the second yields 
a lower bound somewhere in the range of 10 to 100 bitslsec. The con- 
sensus is that the lower bound more nearly represents the human capacity, 
but no really strong argument exists to support this view except that no 
one has yet devised a way to achieve a higher rate. Presumably, however, 
they are the more nearly correct and the upper bounds are so large because 
they ignore so many limitations of the "channel." We shall now examine 
these estimates in a little more detail. 

Upper Bounds. Possibly part of the difficulty in obtaining a satisfactory 
estimate by the first procedure is the present lack of an adequate model 
for what happens functionally within a person when he is processing in- 
formation. Thus, independent measurements on most of the "channel" - 
which is surely not homogeneous in its properties - cannot be had. As 
a result, the estimates which have been made are in a sense only concerned 
with the peripheral aspects of the channel. I will shortly cite another 
reason which has been offered to explain the difference between the upper 
and lower bounds. 

Licklider and Miller [ I  9511 have pointed out that an estimate of the 
capacity with respect to auditory signals can be obtained from a result of 
the theory of information for continuous systems (see the appendix). I t  is 
known that if the bandwidth of the channel is W cycles/sec, and if the 
noise and the signal are simply additive with a power ratio of PIN, then 
the capacity in bitslsec is given by 

C =  Wlog, 1 + - . ( 3 
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For auditory signals, a bandwidth of 5,000 cycles/sec is conservative and 
a signal-to-noise ratio of 30 db, or a power ratio of about 1,000, is not 
unusual, in which case the capacity must be about 50,000 bitslsec. In  
actual attempts to transmit selective information by auditory means, a 
rate as high as 50 bitslsec is unusual. In  other words, the efficiency of the 
auditory system must be considered to be about 0.1 per cent. Licklider 
and Miller, and Peterson [1952], offer the explanation that most of the 
information transmitted by an auditory signal is personal (and highly 
redundant) information about the originator - who he is, his way of 
speaking, his mood, and some of his linguistic history. While this may 
well be the case, it is interesting that no one has yet devised a way to use 
this apparently available capacity for the transmission of preassigned se- 
lective information. 

A far more detailed, but rather questionable, estimate of auditory 
capacity has been made by Jacobson [1950, 1951 a] using various data 
about hearing, such as the total number of monaurally distinguishable 
tones. He concludes from his analysis, which ignores all sorts of possible 
interactions, that one ear should be able to handle about 8,000 bitslsec, 
and admitting very loud sounds, 10,000 bitslsec. I t  is known that there 
are approximately 29,000 ganglio~l cells from the ear, hence the average 
rate of information transfer over a nerve fiber is about 0.3 bitslsec. How- 
ever, he points out that "It is very unlikely that there is any binary or 
similar coding in the cochlear nerves. I t  is consequently not particularly 
meaningful to state that the average informational capacity of a single 
cochlear fiber is about 0.3 bitslsec." ([I951 a], pp. 470-471). 

Jacobson [I951 b] has also carried out a similar calculation for the 
eye, taking into account facts known about discriminability, etc., but 
ignoring the effects of color and of the interactions among the several 
dimensions he has considered. He obtained an estimate of 4.3 x 106 bitslsec 
for each eye. From this one can conclude the maximum average rate over 
each neural fiber must be 5 bitslsec. The inclusion of color would, of 
course, raise this estimate. 

So far as I have determined, these are the only estimates of channel 
capacity which are based on measurements independent of the actual rate of 
information flow. We turn now to estimates of how rapidly information of a 
particular type can be, or rather, has been, caused to pass through a person. 

Lower Bounds: Maximum Observed Rates of Information Transfer. 
Let us first consider the transmission of language encoded information. 
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Miller [:I 95 1 b] points out that if we consider the average measured length 
of vowels and consonants - about 12.5 sounds/sec - and if we were to 
suppose that they are equi-probable and independently selected, then 
speech would convey information at a rate of 67 bitslsec. If, however, we 
take into account their relative frequencies (Dewey, [1923]), then the rate 
is reduced to about 60 bitslsec. Further, if we take into account the fact 
that vowels and consonants tend to alternate in English (for more 
exact information on this for English and other languages, see Newmann, 
[1951]), the estimate is only 46 bitslsec. Finally, on the basis of Zipf's 
law, Miller estimated that there are 10.6 bitslword (Chapter 7). Since a 
speaker can sustain a maximum of about 3 words/sec, the transmission 
rate using speech can be no more than 32 bitslsec. "The maximum effi- 
ciency within the restriction imposed by the phonetic structure of English 
words, therefore, is about 50 per cent." (Miller [I951 b], p. 798). In 
practice, however, an ordinary speaking vocabulary is not nearly as large 
as that assumed when Zipf's law is employed, nor can a person usefully 
employ a speaking rate of 3 wordslsec. An assumption of an equi-probable 
distribution over a vocabulary of 5,000 words which are spoken at a rate 
of 1.5 words/sec yields an information rate of 18 bitslsec. 

In addition, as Quastler and Wulff [1955] point out, the various rate 
estimates using Zipf's law ignore constraints among words. They cite evi- 
dence which suggests that guessing a missing word within context may 
be correct as much as 30 per cent of the time. This reduces the informa- 
tion transmission rate to about 7 or 8 bitslword, and if we assume that 
15 per cent of the words are incorrectly received, the estimate must be 
reduced to 6 or 7 bitslword. Using Miller's speaking rate of 1.5 words/sec, 
it appears that from 10 to 20 bitslsec is a good average rate of transmis- 
sion, and that with rapid speech the rate may get as high as 25 bitslsec. 

Quastler and Wulff report data on several other methods of informa- 
tion transfer, and in summary they find that 25 bits/sec seems to be the 
maximum rate. In all cases, a motor response was required of the subject, 
but they verified that mechanical limitations were not determining an 
apparent rate by showing that higher rates could be achieved if memorized 
materials were used. One experiment they discussed was based on typing, 
but it was known a priori that this would not lead to the fastest possible 
rates, since text can be read aloud faster than a typist can take it down. 
For this experiment, random sequences of letters were drawn from alpha- 
bets of 4, 8, 16, and 32 symbols. Seven experienced typists were paced by 
a metronome at 2, 3, 4, and 6 beatslsec. In general, the errors that oc- 
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curred were the transposition of letters, and so it is a question as to whether 
these should be treated as one or two errors. Depending upon our deci- 
sion, the following upper and lower bounds on information transmitted 
(Chapter 5) are obtained. 

Information Transmitted in bits/sec 

I t  was found, as would be expected, that with the higher metronome 
speeds and with the larger alphabets, the greater percentage of errors 
occurred. For 8 and 16 symbol alphabets a speed of 3.2& 0.2 keyslsec 
represented the highest effective speed, and beyond that their precision 
so decreased as to keep the transmission rate about constant, and beyond 
4.5 keyslsec the quality of their output decreased very rapidly. With 4 
symbols the effective speed was 3.6 keyslsec, and with 32 it was 2.9 keyslsec. 
When the subjects were not driven by a metronome, but were instructed 
to type as rapidly as possible, it was found that the rate of transmission 
was down about 9 per cent. 

A second experiment drew upon the sight-reading ability of three 
young pianists. They were presented with raridom music (notes selected 
using random numbers) and they were paced by a metronome which 
was gradually increased in tempo over trials. Tape recordings were made 
and each of the subjects scored each of the tapes for errors. The agreement 
was fair, but both a low count (errors detected by each subject) and a 
high count (those detected by at least one) were determined. The informa- 
tion transmitted was computed from the error count and from assumptions 
about the error pattern. Again, several different "alphabets" were employed : 
3, 4, 5, 9, 15, 25, 37 and 65 keys. 

The data show that the highest speed for which the error rate remained 
low decreases from 7 keyslsec for an alphabet of 3 or 4 keys to 4.4 keyslsec 
for the 37 key alphabet. This decreased speed, coupled with an increase 
in error rate, keeps the information transmission rate at about 22 bitslsec 
over a fairly wide range of speed and alphabet size. However, for very 
small alphabets and for very large ones, the rate of transmission is less 
than for alphabets of 15, 25, and 37 keys. The interpretation given is that 
channel capacity is the controlling factor for the middle sized alphabets, 
that the sheer range limits performance in the largest ones, and motor 
limitations determine the performance when the alphabets are very small. 

Alphabet size . . . . . . . ( 4 8 16 32 

UpperBound . . . . . . .  
LowerBound . . . . . .  

6.7 10.5 13.2 16.7 
3.8 7.4 11.8 13.4 
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Individual differences became apparent when the subjects attempted 
to exceed their limits. One subject kept the error rate low by failing to 
keep up with the metronome, another kept the pace but allowed the error 
rate to become large, and the third held the pace for periods and then 
he would lose the beat. But in all cases, the information transmitted was 
held roughly constant. 

Quastler and M-ulff have studied a third set of materials for determin- 
ing capacity: mental arithmetic problems. They point out that if certain 
plausible assumptions are made about the information involved in cal- 
culations, and if the published time data on so-called "lightning calcula- 
tors" (people who are noted for rapid mental calculations) are used, one 
obtains an estimate of 22 to 24 bitslsec for the transmission rate. The feat 
of such people appears, therefore, not to be a high rate of information 
transmission, but rather a tremendous storage of information for short 
periods of time. In addition, Quastler and Wulff conducted some simple 
experiments on mental addition of columns of figures. O n  the average 
they found - again by making some plausible, but debatable, assumptions 
- a rate of 6 to 12 bitslsec, but one exceptional subject sustained a rate 
of 23 bitslsec. 

From these data, and others not published, it appears that it is diffi- 
cult to cause a subject, employing familiar operations, to exceed - let 
me be generous - 50 bitslsec, even though present estimates of ear and 
eye capacity exceed this several hundred times. It seems an open problem 
to bring these two estimates closer together, either by devising a method 
to employ much more of the apparent capacity to transmit selective in- 
formation, or by a more detailed analysis of the human being as a channel 
to show that 50 or 100 bitslsec is truly his limit. Jacobson's comments on 
this disparity are of interest. "Thus it is evident that the brain can digest 
generally less than 1 per cent of the information our ears will pass. It must 
be appreciated that the ear is a channel vastly wider than its apprehensible 
output. It  is the ability of the brain to scan for those portions of the auditory 
signal which are of interest which makes the wide capacity of the ear 
maximally useful." ([1951 a], p. 471). 

It will be recalled that in the Quastler and Wulff piano experiment, 
the subjects appeared to be limited by motor factors rather than by "mental 
channel capacity" when the range of keys was small. Even so, one can 
raise this question: is there some sort of exchange between speed and error 
even in this range which keeps the information transmission nearly con- 
stant? If this were so, it would allow us to summarize a good deal of tra- 
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ditional data on motor performance in a comparatively simple way, as 
was pointed out by Fitts [I954 a]. He  ran three experiments on motor 
performance which gave similar results; we shall describe one of them 
(a summary can also be found in Fitts [I954 b]). 

The subject sits before a panel on which there are two plates (cross 
hatched in Fig. 5) and for short periods he is alternately to tap these with a 
stylus. He was instructed to try for accuracy, but within that limitation 
he was to perform as rapidly as possible. The stylus closed an electric 

circuit when the cross hatched plate was touched, and another one which 
recorded errors when the outside region was touched. The variables con- 
trolled by the experimenter were the distance between the plates (i. e., 
the amplitude of the movement) and the size of the plate (i. e., the accuracy 
tolerance). The subject controlled the speed and accuracy of performance. 
Fitts' hypothesis was this: "If the amplitude and tolerance limits of a task 
are controlled by E, and S is instructed to work a t  his maximum rate, 
then the average time per response will be directly proportional to the 
minimum average amount of information per response demanded by the 
particular conditions of amplitude and tolerance." ([1954 a], p. 383). 

On the basis of the continuous theory of information (see the appendix) 
he defined an index of difficulty 

where Wis the tolerance and A the amplitude measured in the same units. 
His hypothesis was that this quantity is linearly related to the average time 
per response, i. e., 
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1 W 
- log, - bitslsec, 
t 2A 

where t the average time in seconds per movement, is a constant. The 
data roughly confirm this hypothesis, e. g., the range is 10.3 to 11.5 bitslsec. 
for one weight stylus. However, at the extremes of amplitude and toler- 
ance he studied, there seemed to be some indication that the information 
transmitted was falling off. Two other experiments of a similar nature 
gave similar results. 

Other Observed Rates of Information Transfer. Not all the experi- 
ments, or the observation taken, on rates of information transfer have 
resulted in rates as high as those described. 

Evidently the mode of presentation of the information vitally affects 
the rate at  which it can be handled; if this conclusion is true, then the 
naive program outlined at  the beginning of' this section for determining 
the channel capacity of a human being must be modified to some degree. 

In  this connection the results of an experiment performed by Klemmer 
and Muller [1953] are of interest. The stimuli consisted of five lights 
arranged in an arc; a corresponding set of telegraph keys was arranged 
under the subject's fingers. The subject was to press the keys corres- 
ponding to those lights which were on. By using various numbers 
of bulbs - the subjects were told which ones would be employed - 1 ,  
2, 3, 4, and 5 bits could be achieved in the presentation. In addition, the 
stimulus cycle, which consisted of lights on 50 per cent of the cycle and 
off the last 50 per cent, was presented at a rate of 2, 3, 4, and 5 cycles 
per second. The subjects were all trained on the apparatus for several 
weeks, and the practice curves indicated that they had completely stabi- 
lized by the time the experiment was performed. 

For a fixed number of bits in the stimulus, it was found that by varying 
the rate of information presented there was a nearly linear increase in 
the transmitted information until a peak was reached, after which the 
transmission rate fell markedly. The location of the peak, and hence its 
value, was found to be an  increasing function of the number of bits in the 
stimulus. 

The approximate values of the peaks were: 

Information presented in bits/stimulus 

1 1 2 3 4 5  

Peak Transmitted Info. in bitsisec . . 1 2.7 4.0 5.8 8.4 10.5 
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The decay of performance following the peak is remarkable. In the case 
of a stimulus with 5 bits, the peak of 10.5 bitslsec occurred when the input 
rate was approximately 13 bitslsec. When the rate was increased to 15 
bitslsec, the transmitted information dropped to 6 bitslsec. This drop is, of 
course, due to a radical increase in the error rate. 

I t  should be mentioned that I am reporting average results, and the 
authors present data to show that there is considerable individual variation. 

Now, it is clear that the maximum rates found in this experiment are 
less than those described above. In many respects this experiment and its 
conclusions are more closely related to those to be described in the next 
Chapter on reaction times than it is tc either the reading, typing, or music 
experiments. One important difference is that in the latter experiments the 
stimuli are before the subject a t  all times and hence the receptor mechanism 
can operate with a considerable lead over the response mechanism, whereas 
such a large lead was not possible in Klemmer and Muller's study. I t  there- 
fore appears to be more nearly a "continuously" executed reaction-time 
experiment. This can be supported from data they present. Typical reaction- 

The Felton, Fritz, and Crier [I9511 study ofcommunications a t  Langley, 
discussed in Chapter 7, yields some data on operational rates of information 
handling. Using "information elements" on which to base their calculations, - 
they found that during a single landing the following amounts and rates of 
information were employed by pilots and tower: 

time experiments were run on the same subjects, and a comparison of the 
inverse of the reaction time to the stimulus rate (in stimuli/sec) at peak 
transmission is revealing : 

I Transmitted in bits Rate in bits/sec 

1/RT . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Stimulus rate at peak transmission. ... 

Air ............ 114 
Tower ......... 1 133 

Bits in Stimulus 

1 2 3 4 5  

3.8 2.6 2.6 2.4 2.4 
3.7 2.4 2.4 2.4 2.4 

However, it will be recalled that they determined that there was a very high 
redundancy in the transmission, and if only "new" information is considered, 
the table becomes : 
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Rate of new 
New Information information transmitted 

Transmitted in bits in bitslsec 

Air . . . . . . . . . . . .  22 1.6 
Tower . . . . . . . . .  1 29 

2.2 

Either set of rates is below that which we have seen is possible for speech. 
Hick writes, "As a personal speculation from such data as are available, 

it seems likely that transmission rates fall into three fairly distinct classes: - 
1. High rates of 10- 15 bits per second. 
2. Moderate - 5-6 bits per second. 
3. Slow - 3-4 bits per second." ([I952 b], p. 68.) 

He feels that these rates are closely correlated to the mode of presentation 
of the information. High rates are obtained only through simple "imitation" 
codes of the type we learn in childhood. Moderate rates are typical of 
"arbitrary" specially learned codes in which each signal has a high informa- 
tion content. The low rates result from arbitrary codes having a low informa- 
tion content per signal and a high rate of presentation. As a partial and 
speculative explanation for rates less than full capacity Hick comments: 
"But for various reasons I am inclined to suspect - I would certainly not 
be more definite than that - that there is a tendency, overcome, if at all, 
only with long practice, to sidetrack one or two bits per discrete movement 
as a kind of monitoring feedback. I t  would be originally necessary in the 
course of developing the skill (the code being, as stated above, relatively 
arbitrary or 'unnatural'), and may be retained, perhaps as a habit, or 
perhaps to keep the skill up to full efficiency, for a long time after that." 
([I952 b,] pp. 70-7 1). 

Experimental results of Fitts and his colleagues (Fitts and Seeger [I 9531, 
Fitts [1954], Fitts and Deininger [1954], and Deininger and Fitts [1955]) 
tend to support part of Hick's position. For example, if the stimulus set is 
a circle of eight lights and the subject is required to respond according to 
the corresponding clock positions, the rate of information transfer is signif- 
icantly higher than if some arbitrary numbering of the lights is used. The 
one clearly has a well engrained cultural basis, and the other does not. 
Such results, while hardly surprising, serve as a check on those who have 
too easily lapsed into speaking of the information in the stimulus set as the 
determiner of information transfer. "[These results] indicate that it is not 
permissible to conclude that any particular set of stimuli, or set of responses, 
will provide a high rate of information transfer; it is the ensemble of S-R 
combinations which must be considered." (Fitts and Seeger [1953], p. 209). 
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OUR PRESENT TOPIC may, in a sense, be considered a continuation of the 
last Chapter on capacity; here we shall deal with what might be called 
"momentary" capacity. Previously we considered long samples of sequential 
stimuli to which the subject responded more or less continuously; now we 
shall consider his reaction time to a single isolated display. The questiori is 
what characteristics of the display need to be considered in order to ac- 
count (simply) for the observed reaction times. The hypothesis, very gener- 
ally, is that the information content of the display is the relevant variable 
and that the reaction time will turn out to be a very simple function of it - 
namely, linear. 

There are, according to information theory, a number of ways in which 
the information transmitted can be varied: a) by varying the number of 
equi-probable alternatives, b) by altering the probabilities of the various 
choices, c) by introducing sequential dependencies between choices, and 
d) by allowing errors (noise) to occur. In the theory these are equivalent; 
whether they produce equivalent human responses is an empirical problem. 

In the first experiment of the series of three I shall discuss, Hick 11952 a] 
considered cases a and d. He presented subjects with a stimulus in which 
one of n equally likely alternatives would arise, and the subject had to re- 
spond as to which occurred. His hypothesis was that the reaction time (RT) 
would be proportional to the information in the stimulus, or, in other words, 
the rate of information transfer would be constant. There is, of course, a 
difficulty in assuming R T =  klogn, since when n = 1 this would require a 
zero reaction time. Hick suggests that there are really n f 1 alternatives, 
since we have ignored the case of no stimulus. Furthermore, he assumes 
that all n f 1 are equi-probable and that R T  = klog (n + 1). This assump- 
tion is controversial and will be discussed below. Accepting it, he finds that 
data taken by Merkel [1885] are well fit by choosing k = 0.626 and that 
his own are fit with k = 0.518. Since a fixed delay, independent of n, seems 
plausible, the function c +  klogn might seem intuitively more suited to 
fitting the data, but it does not fit either set of data as well. These fits were 
obtained with n in the range 1 to 10, i.e., up to a little more than 3 bits. 

Turning to method d of varying the information, Hick points out, ". . . if 
the subject can be persuaded to react more quickly, a t  the cost of a propor- 
tion of mistakes, there will be a residual entropy which should vary directly 
with the reduction in the average reaction time." ([1952a], p. 15). An 

(*) See Bricker [1955] for a survey of much the same material as discussed here. 
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experiment was performed in which the subjects were pressed, and the 
errors were taken into account by computing an equivalent error-free n , n, . 
T h e  reaction time data when plotted against n, were found to be fit pretty 
well by the curve obtained for the errorless case. 

In Hick's experiment the rate of information transfer was about 5.6 
bitslsec, a value which is low compared with the largest obtained using a 
"continuous" stimuli presentation. 

We must consider Hick's assumption that there are n+ 1, or in the more 
general case n, + 1, equiprobable alternatives. In  a later paper [1954] he 
defends this choice as follows: "The discrimination between 'nothing' and 
'something,' so to say, was practically perfect. 

"But the discrimination between the n, mathematical fictions was also 
perfect, by definition; and they are defined as equally probable. I t  is as if 
the subject were able to state with certainty - in an  average sense, of 
course - which of the n,+ 1 phases the environment was in. In other words, 
an impartial observer, having no reason to think one phase more probable 
than another, could 'receive log (n,+ 1) units of information from him, per 
response. That  is a fact, whatever the reaction time might happen to be, 
and it implies that the one extra possibility - that of no signal - can be 
regarded as having the same probability as any particular signal. Whether 
it really has is neither here nor there - the subject's channel capacity is 
such that it can have." ([1954], p. 400). 

Mandelbrot(*) has suggested an alternative model based upon his 
theory discussed in Chapter 8. The fact that a response occurs, or doesn't, 
plays a special role, analogous to a space in ordinary language, which is 
quite different from the particular responses, which are treated as ordinary 
letters. Using his cost model, where reaction time is now the cost involved, 
the second approximation leads to 

where m and T are unknown constants and n is the number of alternatives. 
This formula is related to, but different from, Hick's and it is not known 
whether it fits the data as well. The rationale for it, however, seems to me 
more substantial and better capable of being extended than does Hick's 
argument. 

"The original evidence that the illformation measure was the appropriate 
one to use for interpreting choice-reaction times was simply that the loga- 
rithmic function occurs in both. This in itself is not strong, since logarithmic 

(*) Personal communication. 
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relations occur rather often in biological measurement. The case became 
much stronger with Hick's finding that the reduction in response-time where 
errors are permitted obeyed the same law." (Crossman [1953], p. 41), 
Cronbach [1955] also stresses this important point, and he notes that the 
argument is made even stronger by Hyman's data, to which we turn now. 

Hyman [1953] examined methods a, b, and c of varying the information 
when the performance was kept errorless. He states his hypotheses as, 

"1) Reaction time is a monotonically increasing function of the amount 
of information in the stimulus series. 

"2) The regression of reaction time upon amount of information is the 
same whether the amount of information per stimulus is varied by altering 
the number of equally probable alternatives, altering the relative frequency 
of occurrence of particular alternatives, or altering the sequential depend- 
encies among occurrences of successive stimuli." ([1953], p. 189). 

The stimuli were a matrix of lights with a range of 0 to 3 bits. The subjects 
responded by a vocal key, which seems to yield more precise measurements 
than the hand-operated key of Hick's experiment. The subjects were given 
complete statistical information about the stimuli and before each test run 
they were given sample sequences formed according to the appropriate 
statistics. Four subjects were used. The correlations reported below are the 
average of the four correlations computed for each subject separately. 

In the first phase, the number of equi-probable alternatives were varied 
and a correlation of 0.983 was found between reaction times and inform- 
ation in the stimuli. This confirms Hick's results. In the second phase, when 
the relative frequencies were changed, an average correlation of 0.975 was 
found. In the third phase, introducing sequential dependencies resulted in 
a correlation of 0.938. The last correlation is significantly lower than the 
other two. 

Hyman concludes from his data that his second hypothesis, while not 
acceptable at  the 1 per cent level, is acceptable at  the 5 per cent level. How- 
ever, he points out two features in the data which suggest to him that the 
subjects did not react to the fine information structure of the experiment. 
In the third experiment there were cases where if a stimulus occurred, then 
in the next presentation it could not possibly occur, and the subjects knew 
this. Yet instead of reducing the reaction time, this increased it. This result 
seems disturbing. 

He also raises this point: the reaction time to an event with probability 
p does not depend upon p alone, but also upon the probabilities of the other 
events in the display. Thus, although the average reaction time is deter- 
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mined by the average information in the display, the individual reaction times 
are not determined by the surprise - log,p - of the individual events. I t  
is well to know this, but it does not seem to me to be either surprising or 
unfortunate, for the main thesis is that the subject responds to the overall 
statistical features of the display as described by the average information. 

The relation between average reaction time and information has been 
further examined by Crossman [1953]. "When a subject responds to a 
sequence of signals all of which belong to a known set but some of which 
occur more frequently than others, his average response-time will be propor- 
tional to the average information per signal. This follows from the hypothesis 
that the subject deals with information at  a constant rate." ([1953], p. 41). 
To  test this he used a sorting task on ordinary playing cards. By varying the 
dimensions on which they were to be sorted he was able to examine the 
reaction times over a range of 0 to 2 bitslcard. The correlation between 
reaction time and information per card was 0.86, and when the data are 
plotted it appears that no simple curve will fit them better than a straight 
line. 

Crossman adduced evidence, to show that the deviations from linearity 
were due to differential difficulties in discriminating the cards in different 
classes. On  the basis of this he made the important observation that there 
is ". . . a  major difficulty in the use of information theory in psychology, for 
information theory in the discrete case stated by Shannon says nothing 
about actual signals and the process of distinguishing them one from an- 
other; it deals only with abstract symbols already identified and distinct." 
([1953], p. 49). This, of course, suggests carrying out a similar experiment 
using only one dimension of discrimination and causing the entropy to vary 
along it. This was done and the fit was improved. 

O n  the basis of his data, Crossman concluded ". . . our hypothesis that 
rate is constant under variation of relative probabilities is upheld by these 
observations, with the proviso that 'discriminability' of signals should be 
equal in a sense yet to be precisely defined." ([1953], p. 50). 

From these data it seems reasonable to conclude tentatively that the rate 
of information transfer in a reaction time experiment is constant when the 
information in the stimulus is in the range 0 to 3 bits. Since this conclusion 
is not in conformity with the observations made with a "continuous" stimuli 
presentation, it would certainly be interesting to see whether the rate re- 
mains constant when there are more than 3 bits in the stimulus, and also 
to see whether an experiment can be found with the rate constant, but 
much larger than 5 bitslsec, for the range 0 to 3 bits. 



[84] The Theory of  Selectiz'e Information and Some o j '  Its Behaoioral Applications 

1 1. VISUAL THRESHOLD AND WORD FREQUENCIES 

I N  THE EARLY 1950's there were a series of experiments performed on the 
relation between the visual threshold of word recognition (as given by 
tachistoscopic measurements) and the frequency of their occurrence. Origin- 
ally, the program stemmed from work on the Bruner-Postman hypothesis 
that sentences which relate to things liked are recognized with less difficulty 
than those relating to things disliked. Evidence has accumulated that the 
major relation is actually between recognition speed and the frequency of 
occurrence of the word in the language. Howes [I9501 cites data involving 
sentences, and Howes and Solomon [I9511 cite similar data involving only 
words. I n  the latter case, word frequency counts were obtained from Thorn- 
dike and Lorge [1944] and there was found to be a correlation of about 
-0.7 between recognition time and the logarithm of word frequency. 
Howes [I9501 and Miller [1951 a] describe data taken by Solomon in which 
seven-letter Turkish words were used. These were written on cards which 
the subjects studied. Some words appeared on many cards, others on only 
a few, so there was differential exposure to these new words. A correlation 
of -0.96 was found between recognition time and log frequency. King- 
Ellison and Jenkins repeated Solomon's experiments with some slight varia- 
tions, including the use of artificial five-letter words, and they obtained a 
correlation of -0.99. They point out a relationship to information theory 
is suggested, namely, that recognition time is a linear function of the inform- 
ation transmitted by a word. T h e  earlier comment I quoted from Crossman 
is relevant here, namely, that logarithmic relations are so common in biology 
and psychology that more must be established before an  information the- 
oretic model is assumed. 

O n  the other hand, one can argue that this result is predicted by Mandel- 
brot's model of language, provided that one is willing to make one assump- 
tion (see Mandelbrot [1954a]). I t  will be recalled that a central notion of 
his model is the cost C, of a word of rank r, and this was left undefined in 
the general model. I t  is plausible that recognition time is this cost. If so, 
then by Zipf's relation, we know that a word of rank r has a probability 

or  taking logarithms, 

1 P r  
logr = --log-. 

B P 
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But Mandelbrot showed, to a first approximation, that C, = logy, thus we 
conclude that recognition time should be negatively correlated to the loga- 
rithm of the probability of occurrence. The second approximation to the 
cost expression would lead to a slightly different prediction, and it would be 
of interest to see whether a careful experiment could discriminate between 
these two predictions in favor of the second and more exact one. 

Work of Krulee, Podell, and Ronco [1954] is related to and consistent 
with the above data. They established the distance from the eye at  which a 
symbol is first recognized and found a slight decrease in the mean distance 
as the number of alternatives was increased. 

WHEN A SUBJECT is required to place stimuli varying along one dimension, 
such as size or loudness, into N simply ordered categories, such as the first 
Nintegers, then he is said to be making absolute judgments of the dimension 
of the stimuli. For example, the stimuli might be pure tones at 100,150,200, 
..., 1,000 cycles/sec. Each time a tone is presented he must place it in a 
category as accurately as he can. I t  is clear that in general errors will occur 
of the form: a tone with a lower frequency than another will be put in a 
higher number category. I t  is also clear that the error rate can probably be 
diminished by reducing the number of categories. For example, if he must 
place the above stimuli in 21 categories, we may expect more errors than if 
he need only report whether a signal is below or above 500 cycles/sec, for 
then there will be little ambiguity in his mind except for those stimuli near 
500 cycles. Such experiments have a long history, but there has always been 
some difficulty in summarizing the data -just how should the error picture 
be presented ? 

Garner and Hake [1951] pointed out that the matrix relating input 
stimuli to response categories, with the entries the frequencies of pairings 
between a stimulus and a category, can be treated (with the obvious norm- 
alization) as a noise matrix for a communication system, where the com- 
munication is of selective information from the stimuli to the experimenter 
via the subject as a channel. We may, therefore, compute the information 
of the stimulus set (which, of course, depends on the relative frequencies of 

(*) An excellent summary discussion, and interpretation, of much of the data in this 
and the following two chapters, plus some not so immediately related to information theory, 
has been presented recently by Miller [1956]. 
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presentation of the different stimuli) and the equivocation of the transmis- 
sion, and the difference is the information transmitted. If for a certain type 
of absolute judgement it is found that 2 1 categories allow the transmission 
of 3 bits, then in principle as much can be transmitted using only 8 un- 
ambiguous categories. Choosing the categories so that there is no ambiguity, 
i.e., no errors, may be difficult, but Garner and Hake point out that if the 
errors have a Gaussian distribution the condition is equivalent to a criterion 
of equal discriminability. 

In another paper (Hake and Garner [1951]) they cite the difference 
between the usual error analysis for experiments of absolute judgments and 
the proposed information theory analysis. An error analysis ignores the fact 
that if the error distributions do not overlap, there will be no ambiguity. The 
information analysis takes this into account, but, unlike the error analysis, 
it completely ignores the magnitudes of the errors. There are some applica- 
tions where it is preferable to have a multitude of small errors, provided 
that there is never a single major one. 

A number of applications of this proposal have been made to different 
classes of absolute judgments. Pollack [I952 a] studied tones spaced equi- 
distantly on a logarithmic frequency scale from 100 to 8,000 cycles/sec. The 
subjects had to assign a number to each tone presented. When there were 
2 and 4 tones in the stimulus set, the transmission was perfect, 1 and 2 bits 
respectively. But with 8 and 16 tones, the curve became~flat, and the average 
maximum transmission was 2.3 bits, or the equivalent of perfect identifica- 
tion among 5 tones. The best subjects reached the equivalent of only 7 
tones. On the grounds that there are known to be 40 to 60 identifiable sounds 
associated with speech and music, Pollack felt that there must have been a 
serious underestimation of the information transmitted, and so he performed 
a series of auxiliary experiments to attempt to raise the value. Six different 
partitions of the frequency space were examined, and the frequency range 
was varied with the bottom held at  100 cycles/sec and the top moved from 
500, 2,000, 4,000 to 8,000 cycles/sec. These variations, and similar ones in 
a later paper (Pollack [1953]), resulted in only a few percentage points 
change in the information transmitted. He suggested that the result is so 
low because of the acute sensitivity of the information measure to error, 
which we have mentioned earlier (Chapter 4). However, later results which 
I shall present below show how more information can be transmitted and 
so suggest indirectly that the low value found may be realistic. 

Halsey and Chapanis [195 11 have presented similar data on the number 
of absolutely identifiable spectral hues, and though they did not apply an 
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informational analysis, their findings are of some interest. The colors were 
identified sequentially from violet to red by numbers, and the subjects were 
familiarized with the number-color code until learning was completed. In  
a test using 10 hues and 20 judgments per hue, they found that two observers 
were correct in 97.5 per cent of the judgments. These hues were selected on 
the basis of several earlier experimental runs in which more hues were 
employed, but a lower accuracy was obtained. They note that absolute 
identifiability of 10 hues is considerably better than had been previously 
reported, but they attribute this mainly to different experimental conditions. 

If we turn to the sense of taste, similar results hold except that the max- 
imum amount of information transmitted is definitely less than for either 
pitch or hue. Beebe-Center, Rogers, and O'Connel [1955] report data for 
both sucrose and saline solutions with the number of stimuli varying from 
3 to 17. The concentrations were chosen to be roughly equally spaced in 
jnd units. The information transmitted reached a peak of about 1.7 bits per 
judgement for sucrose and a range (for three subjects) from 1.6 to 1.8 bits 
per judgment with a saline solution. As the number of stimuli in the set 
were increased, there was a decrease in the information per judgment down 
to about 1 bit for 17 stimuli. The most notable aspect is that these data are 
equivalent to perfect discrimination among only three distinct stimuli, as 
compared with five to seven tones and possibly as many as 10 hues. 

Hake and Garner [195 11 applied an information theory analysis " ... to 
determine the minimum number of different pointer positions which can 
be presented in a standard interpolation interval to transmit the maximum 
amount of information, not about which positions of the pointer are occur- 
ring, but about the event continuum being represented." (p. 358). Two 
variations were run: in the limited response case the subjects were told the 
values the pointer could assume and they were required to respond only 
with those numbers; in the unlimited response case no such restriction was 
made. 5,10, 20, and 50 possible pointer positions were used, and the data 
are summarized below : 

Information Transmitted in Bits 

Number of Positions I 10 20 50 

We observe that beyond 10 pointer positions the amount of information 
transmitted is roughly constant - equivalent to about 10 errorless positions. 

Limited Response . . . . . . . . . . . .  
Unlimited Response . . . . . . . . . .  

2.3 1 3.14 3.16 3.19 
2.29 3.03 3.11 3.41 
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There seems to be little or no difference between limited and unlimited 
responses as far as this analysis is concerned, but Hake and Garner point 
out that an error analysis shows that the errors increase when the subjects 
are allowed unlimited response. 

In a later paper, Garner [1953] comments: "A measure of information 
transmission provides a means of specifying perceptual and judgmental ac- 
curacy in situations where absolute judgments about various categories on 
a stimulus continuum are required. This measurement allows the deter- 
mination of the maximum number of stimulus categories which could be 
used with perfect accuracy without the necessity ofsampling all the possible 
numbers of categories. However, this use of information transmission re- 
quires the assumption that the inherent judgmental accuracy is independent 
of the number of stimulus categories used experimentally. Two experiments 
(Garner and Hake, and Hake and Garner) have shown that this assumption 
is quite valid for situations involving judgments of position in visual space, 
and Pollack's experiment demonstrates its validity for judgments of pitch" 
(p. 373). Garner then proceeded to examine its validity in judgments of 
loudness of tones using 4,5,6,7,10, and 20 stimulus categories and a cor- 
responding number of response categories. He found that judgment ac- 
curacy was nearly perfect for 4 and 5 categories (perfect being 2 and 2.32 
bits respectively), but that it had dropped to 1.62 bits for 20 categories, 
which is equivalent to perfect accuracy for only three categories. Thus, the 
assumption is apparently not valid for loudness. 

He went on to show, however, that the information transmitted could 
be improved if both the observers, i.e., the subjects, and the stimuli were 
taken as inputs to the system and the responses as outputs. (See Chapter 5, 
Multivariate Theory, for the analysis procedure when there are more than 
two dimensions.) In other words, there was considerable variability among 
the subjects when a large number of categories were employed. A further 
raising of the information transmitted is achieved, so that there is no drop 
at all, if the stimuli, the observers, and the preceding stimulus are all taken 
as inputs to the system. 

Ericksen and Hake [1955] have obtained data and given a similar 
analysis for judgments of size. Their interest was not so much with the value 
of the information transmitted as "...with the extent to which the number 
of absolutely discriminable stimulus categories can be affected by subjective 
anchoring effects associated with the range and density of the stimulus 
dimension and with the number of response categories available to SJ. for 
expressing discriminations or judgments." (p. 323). Judgments were made 
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of squares in two ranges, 2 to 82 mm and 2 to 42 mm, with 5, 11, and 21 
stimuli in each range and using 5, 11, or 21 categories. All combinations 
of number of stimuli and number of categories were examined. I t  was found, 
as might be expected, that for a fixed number of stimuli and of response 
categories, discrimination was better for the larger range than for the smaller 
one; the difference was significant, but slight (about 0.2 bits). 

The interaction between the number of stimuli and number of response 
categories is shown in the following table: 

Information transmitted in bits per judgment 

Number of Stimuli 1 5 1 1  21 

Number o f . .  ......... 5 2.08 1.65 1.49 
Response ............ 1 1  1.93 2.07 1.90 
Categories . . . . . . . . . . .  21 i 2.03 2.14 2.08 

We observe that' when the number of stimuli match the number of response 
categories, the information transmitted is constant, and it is nearly so when 
the number of response categories exceeds the number of stimuli. There is, 
however, a distinct reduction if there are more stimuli than response 
categories. This is not unreasonable since as the number of response cate- 
gories is reduced, the possible response entropy is reduced, so the error 
entropy would have to diminish an equal amount. in order to keep the 
information transmitted a constant. Detailed study of the data show this did 
in fact happen for the larger stimuli, but not for the smaller ones. An explan- 
ation is given, which we need not enter into here, in terms of the character- 
istic end (or anchoring) effects of the method of absolute judgments. 

Klemmer and Frick [1953] carried out an experiment similar in method 
and analysis to those above, except that there were two and three stimulus 
dimensions instead of one. They flashed (0.03 sec) a display consisting of 
white dots on a black background to subjects who marked on answer sheet 
grids what they thought the position of the dots to be. The experiment was 
run both with and without grid lines on the black background, but appreci- 
able differences were not found in the data. With the situation restricted to 
the presentation of one dot, the information in the stimulus could be varied 
by changing the order of the matrix of possible positions. From 3.2 bits 
(order 3) to 5.2 bits (order 6) there was an increase in information transmit- 
ted from 3.2 to 4.4 bits. From 5.2 bits to 8.6 bits (order 20) in the display, 
the information transmitted remained approximately constant. 

In addition, the number of dots presented was varied, and it was found 
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that by using 4 dots and a matrix of order 3 (7.0 bits), 6.6 bits were transmit- 
ted. Further, when from 1 to 4 dots were used, then a display having 8.0 
bits resulted in almost perfect transmission -7.8 bits. "It is clear that the 
maximum amount of information that can be assimilated from a brief 
visual exposure is a function of the type of encoding used. The question 
immediately arises as to whether or not there is a common metric which 
may be applied to the different message classes and which will correlate 
with the maximum information-carrying capacity of that class." (Klemmer 
and Frick [1953], p. 18). They observe that using only one dimension or 
coordinate (the location of a point on a line) Hake and Garner found a 
maximum transmission of 3.1 bits, and using the two coordinates of a 
matrix plus the one of the number of dots, they found 7.8 bits transmitted. 
This suggests that the maximum increases with the number of dimensions. 

This supposition is confirmed in data taken by other experimenters, 
particularly those reported by Pollack and Ficks [1954]. In the first of these 
studies, Pollack [1953] presented auditory stimuli which varied both in 
pitch and loudness, each dimension being represented by five stimuli 
roughly spaced at subjectively equal intervals. I t  was found that the multiple 
absolute judgments caused a slight reduction in the information transmitted 
in each dimension, and that the total information transmitted was a little 
in excess of the sum of the two dimensions analyzed separately(*) and a 
little less than their sum for the judgments made separately on the two 
dimensions : 

Information transmitted 
Condition per judgment in bits 

1. Frequency alone, no report on loudness.. . . . . . . . . . . . . . . . . . . . . . . .  l.B(t) 
2. Frequency alone, loudness report given . . . . . . . . . . . . . . . . . . . . . . . .  1.6 
3. Loudness alone, no report on frequency . . . . . . . . . . . . . . . . . . . . . . . .  1.7 
4. Loudness alone, frequency report given . . . . . . . . . . . . . . . . . . . . . . . . .  1.3 
5. Combined frequency and loudness reports . . . . . . . . . . . . . . . . . . . . . .  3.1 
6. Sum of 1 and 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.5 
7 . S u m o f 2 a n d 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2.9 

( t )  Note, this value is not as large as the rate Pollack [I952 a] reported earlier. 

Roughly similar results were found by Beebe-Center, Rogers, and 
O'Connel when they combined the several possible mixtures of sucrose and 
salt (holding the amount of solvent constant) ; however, in every case the 
subjects transmitted slightly more information for the compound stimuli 
than the sum of the information transmitted for the two dimensions separate- 

(*) Recall that McGill's multivariate model (Chapter 5) shows that this is possible 
because of the interaction term A(uvy) .  
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ly. The  excess ranged from 0.04 to 0.20 bits in a total value of roughly 2 
bits. 

The  most vivid demonstration of the increase of information transmitted 
with increased dimensions is given by Pollack and Ficks [1954]. In one 
display there were eight dimensions, which were achieved by presenting the 
subject with a stimulus composed of a tone and noise alternating in time. 
The  eight variables on which he had to report were: frequency range of 
the noise, loudness of the noise, frequency of the tone, the loudness of the 
tone, the rate of alternation between the tone and noise, the fraction of time 
the noise was on, the total duration of presentation of the display, and the 
direction within the room from which the sound originated. In each case he 
was asked only to make a binary decision: high or  low, loud or  soft, fast 
or  slow, etc. In  a second variation, only the interupted tone was used and 
so there were only the last six of the above dimensions; however, in addition 
to the binary classification on each dimension, subjects were also run having 
to classify each dimension into 3 and 5 categories. 

T h e  subjects were separated into three classes of equal size according 
to the amount of information transmitted. The  results for the poorest and 
the best classes are given: 

Information Transmitted in Bits per Stimulus 
Steps per Dimension Maximum possible Poorest Third Best Third 

two . . . . . . . . . . . . . . . . . . .  6 4.8 5.6 
two . . . . . . . . . . . . . . . . . . .  8 6.4 7.4 
five . . . . . . . . . . . . . . . . . . . .  1 13.9 6.2 7.8 

Two aspects of these data are striking. First, the total amount of informa- 
tion transmitted is much greater than was possible using one dimension. 
Second, increasing the number of classification steps per dimension increases 
the information only very little as compared with increasing the number of 
dimensions. 

Pollack and Ficks present data on the information transmitted for each 
of the separate dimensions and there are considerable differences. In the 
eight dimensional case, direction conveys the most, 0.97 bits, and frequency 
of the noise least, 0.78 bits. Furthermore, by considering the data for the 
finer subdivision they find "In general, dimensions associated with a high 
informational transfer.. . show a progressive increase in transmission with 
finer subdivision, whereas dimensions associated with a low information 
transfer.. . may show a maximum transmission with a cruder subdivision. 
Thus, the effectiveness of subdividing dimensions of elementary multidi- 
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mensional auditory displays is a function of the specific dimensions employ- 
ed." ([1954], p. 158). 

It is reasonably certain that eight dimensions is not the limit to increased 
information transfer and it would be interesting to know just how far this 
can be effectively extended. Of course, as Pollack and Ficks point out, such 
a method of increasing the information transmitted may not be useful in 
practice. Their study completely ignores the time parameter and presum- 
ably as the number of dimensions is increased the rate of information trans- 
mitted reaches a peak. Judging by the earlier results presented on rates, this 
peak can be expected at about eight or ten binary dimensions. 

These results appear to tie into some recent work in linguistics. Jakobson, 
Fant, and Halle [1952] have attempted to show that the various speech 
sounds of natural languages can be classified according to a number of 
elementary binary linguistic characteristics: nasal or not, stopped or not, 
etc. It is thought that discrimination of sounds occurs by recognizing which 
state obtains for each dimension. Certainly, the above data would indicate 
that this is the most efficient way to use the auditory characteristics of 
human beings. (Also see Osgood [1954]). 

On  the basis of the several experiments we have discussed, one can 
conclude that for objective ratings there is, up to a point, an increase in the 
information transmitted with an increase in the number of categories. After 
that point the information transmitted either remains constant or decreases. 
Bendig and Hughes [1953] raised this question: Is the same conclusion 
possible for ratings of subjective feelings? To  study this, they had subjects 
evaluate, according to either 3, 5, 7, 9, or 11  categories, their knowledge of 
12 different countries. Anchoring statements of the form "I know (a great 
deal) (something) (very little) about this country" were employed in three 
variations: center anchored, both ends anchored, and both ends and the 
center anchored. Information transmission, they found, was increased by 
an increase of number of scale categories, except that there was a decelera- 
tion in the step from 9 to 11  categories. This is reconfirmed by Bendig 
[1953b]. This effect is in accord with the diminishing return observed for 
objective scaling. Bendig [1954] points out that it is also consistent with the 
hypothesis that the information transmitted is a constant proportion of the 
maximum possible, and he reports further data which substantiates this 
assumption. 
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13. SEQUENTIAL DEPENDENCIES AND IMMEDIATE RECALL, OPERANT 

CONDITIONING, INTELLIGIBILITY, AND PERCEPTION 

ONE OF THE MAIN POINTS of the 1949 Miller and Frick paper was to bring to 
the attention of psychologists that in information theory they had a tool ideally 
suited to the characterization of sequential dependencies in the stimulus, in 
the response data, or in both. There appear to have been four areas of 
psychological study to which this observation has been applied: to the 
learning of written material as a function of the statistical dependencies in 
those materials, to the sequential responses obtained in operant condition- 
ing, to the intelligibility of verbal material as a function of statistical 
dependencies within the material, and to the ability of subjects to perceive 
statistical dependencies in materials. I shall discuss them in that order. 

Immediate Recall. "Briefly stated, the problem.. . is, How well can people 
remember sequences of symbols that have various degrees of contextual 
constraint in their composition? The experimental literature contains 
considerable evidence to support the reasonable belief that nonsense is 
harder to remember than sense. This evidence has suffered, however, from 
a necessarily subjective interpretation of what was sensible" (Miller and 
Selfridge [1950]). Using Shannon's method, Miller and Selfridge prepared 
N1" order approximations to English in the following manner: A sequence 
of N successive words was chosen at random from a connected text, and a 
subject was asked to imbed the passage in a meaningful sentence. The first 
word in his sentence following the original group of N words was recorded. 
The next subject was presented with the last ,'V- 1 words of the original 
passage plus the new word, and he placed this -2'-word passage in a sentence. 
The first word after the passage was recorded, and so on. In this manner 
they generated approximations of order 0,1,2,3,4,5, and 7 in passages of 
10,20,30, and 50 words in length. Using these approximations to English, 
plus meaningful text, a standard recall experiment was executed. With the 
passage length held constant, they found that the percentage of recall 
increases with an increase in the order of approximation to English. In par- 
ticular, for the 30 and 50 word passages the recall of the 5th and 7Ih order 
approximations to English is very little different from the recall of text 
material of the same length - this notwithstanding the fact that the 5Ih 
order is quite nonsensical and the 7Ih order by no means would be considered 
English. With shorter passages, recall comparable to that of text was 
achieved for even lower values of ,?i 
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"The results indicate that meaningful material is easy to learn, not 
because it is meaningful per se, but because it preserves the short range as- 
sociations that are familiar to the Ss. Nonsense materials that retain these 
short range associations are also easy to learn. By shifting the problem from 
'meaning' to 'degree of contextual constraint' the whole area is reopened to 
experimental investigations." (Miller and Selfridge [1950], p. 183). For 
example, one may ask whether their conclusion is valid for the whole 
memory decay curve, or whether it holds only for short term memory. 

Similar results have been found by Aborn and Rubenstein [I9521 in a 
slightly different experimental situation. They devised an "alphabet" of 16 
nonsense syllables which fell into four easily distinguished classes of four 
syllables each; this classification was shown to the subjects. From these 
syllables six classes of passages of 30-32 syllables were constructed. The 
members of the first class were formed by random selection of syllables, and 
the others had increasing amounts of organization. For example, class four 
passages were marked by commas into groups of four syllables, and the first 
syllable of each group was chosen from class one, the second from class two, 
etc. The subjects were allowed 10 minutes to study the formal organization 
of the passage on which they would be tested and then three minutes to 
learn the actual passage, after which they were asked to reproduce it as 
accurately as possible. The authors had two hypotheses: "(a) The amount 
of learning in terms of syllables recalled is greater as the organization of the 
passage is greater, i.e., as the average rate of information is smaller. (b) The 
amount of learning in terms of the information score, computed as the 
product of the number of syllables recalled and the average rate of informa- 
tion, is constant for all passages." ([1952], p. 261). The data verified the 
first hypothesis, but not the second. For the first four passages the total 
amount of information learned was constant, but it dropped in passage 5 
and even more so in passage 6. The breaking point was between 1.5 and 
2 bits/syllable. This result simply means that the subjects were unable to 
memorize enough syllables to keep the information score high when the 
information per syllable was very low. Both these findings are in conformity 
with those of Miller and Selfridge above. 

These same authors have pushed the problem further in a later paper 
(Rubenstein and Aborn [1954]). They conjectured that the lack ofconstancy 
in the information learned as the degree of organization changed was due 
to both inadequate training and too short study periods. Using the same 
materials to form passages of from 1 to 4 bits per symbol and of length 80 
symbols, they repeated their experiment with a 10-hour training period 
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and varied the study periods from 1 to 20 minutes. The previous results were 
not only reconfirmed, but strengthened : the amount of information recalled 
decreased with every increase of the degree of organization within the mes- 
sage, holding the study time constant. This was not merely a trend, but it 
was strictly true for each length study period. Consider two passages: it was 
found that the ratio of information recalled in the one of higher degree of 
organization to the one of lower degree is less than the ratio of the informa- 
tion per symbol in the two passages. And finally, the information recalled 
per unit of study time was a decreasing function of the total length of study 
time. 

One appears to be able to conclude that meaningful text is made easy 
to recall (at least in part) by its redundancy, but that it is not correct to 
state that holding other things constant the amount of information recalled 
is constant. 

Operant Conditioning. Frick and Miller [ I  95 11 have reported an applica- 
tion of their earlier ideas for the measurement of stereotypic behavior 
(Miller and Frick [1949]) to the operant conditioning of rate in a Skinner 
box. Two responses were observed: approach to food (A) and bar pressing 
(B). "Instead of the usual analysis in terms of the rate of responding to the 
bar, the results are analyzed here in terms of the patterns of responses" 
([195 11, p. 2 1). Three experimental phases were considered separately in the 
analysis: a) behavior prior to conditioning (operant level), b) conditioning 
behavior, and c) extinction behavior. During phase b a total of 300 rein- 
forcements were applied. 

In all phases the behavior was recorded as sequences of A's and B's, and 
the uncertainties - in terms of the index of behavioral stereotypy (redun-. 
dancy) - were computed. I t  was found that "intersymbol" influences did 
not extend appreciably. beyond two symbols, and the value of the uncer- 
tainty in phase a was 0.408 for two symbols. Such a high value when there 
has been no conditioning is a consequence of the fact that such a sequence 
as AAAA had a probability of 0.732 of occurring; indeed, the behavior of 
the rats was more stereotyped before conditioning than after. "The training- 
period did not introduce order into randomness, but rather caused the 
animal to abandon one well organized pattern of behavior for another. 
This needs some qualification. The lower stereotypy after conditioning ap- 
pears when we consider only the temporal order; when we try to predict 
which response comes next. If we tried to predict also when the next 
response would occur and how long it would last, then the conditioned. 
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behavior would look less random than the pre-conditioned behavior." 
([1951], p. 25). 

Another simple way the data may be described is as points in a two- 
dimensional plot ofp  (BI B) vs p (A( A). In phase a of the experiment the rats 
were approximately at the point (0.9, 0.75). This high perseveration is, in 
large part, simply a reflection of the topography of the Skinner box, as can 
be seen from the fact that 96 per cent of the responses separated by less than 
10 seconds are of the form AA and BB, while this is reduced to 52 per cent 
for responses separated by more than 80 seconds. 

During conditioning, phase b, the rats initially move down the plot and 
then curve slowly over to an equilibrium point of about (0.4,O. l ) ,  as shown 
in Fig. 6. During the extinction period the movement of a rat in this space 
is not very clear. There appears to be an initial tendency toward the center 
(0.5, 0.5) of the plot, or random behavior, but there is considerable random 
variation over a large portion of the plot. Over a 36-hour period there is a 
drift toward the initial resting point, but no stability is achieved in that 
period comparable to that prior to conditioning. I t  was not determinable 



The Theory of Selective Information and Some $I t s  Behavioral AMlications [97] 

from these data how long it takes for the effects of reinforcement to wear off. 
As in phase a, there is little difference between the uncertainty determined 
from two successive responses and from more than two, and after some 
extinction there is little or no difference in the index based on a single 
response and that based on successive pairs of responses. 

"The data presented and analyzed [in this paper] do not provide any 
startling new insights into operant conditioning. Most of the conclusions 
seem perfectlyreasonable and obvious to anyone who has worked with rats 
in a similar situation and observed their general behavior closely. The im- 
pressive feature of such an analysis is the extent to which the qualitative 
aspects of the behavior can be incorporated into a completely quantitative 
account." ([.1.951], p. 35). 

Intelligibility. The data on the effects of sequential dependencies on 
intelligibility are less detailed than for learning. There is an experiment by 
Miller, Heise, and Lichten [1951] in which certain gross effects were exam- 
ined. They explored the effects of three different contexts on intelligibility, 
namely: 1) the test item is known to be one of a small vocabulary of pos- 
sible items, 2) the test item is imbedded in either a word or a sentence, and 
3) the test item is known to be a repetition of the preceding item. The 
materials used were digits, words in sentences, and nonsense syllables, and 
it was found that intelligibility decreased in that order. Further, the intel- 
ligibility of monosyllables, isolated words, and words in sentences was found 
to increase in each case as the domain of possible items was decreased. Only 
a very slight increase in intelligibility resulted from the knowledge that the 
item was a repetition of the preceding one. "The results indicate that far 
more improvement in communication is possible by standardizing proce- 
dures and vocabulary than by merely repeating all messages one or two 
times." ([1951], p. 335). This conclusion seems to confirm the military 
practice of using standardized languages when conditions are adverse, as in 
air traffic control (see Chapter 7). 

Perception of Statistical Dependencies. Hake and Hyman [1953] raised 
the question of just how well and in what way people perceive sequential 
dependencies that are built into a set of stimuli. They chose to summarize 
their results in terms of certain conditional uncertainties - entropies - of 
the subject's responses. Their experiment was divided into four series of runs. 
Each run consisted of 240 presentations of one or the other of two symbols 
( H a n d  V),  and these presentations were generated according to the follow- 
ing probabilities and conditional probabilities: 
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Series I 2 3 4 

p (H) . . . . . . . . . . . .  
p(H1H). . . . . . . . . .  
P(V). . . . . . . . . . . . .  
P ( V l  V)  . . . . . . . . . .  

Prior to each presentation, a subject was required to predict, or guess, 
which symbol would occur. The problem of analysis is to determine how 
accurately we can predict his guess provided we know certain past events 
such as his previous guesses and the symbols which actually occurred. 
For the last 120 trials the following conditional entropies were examined: 
the entropy of the guess y when only the distribution ofy is known -H(y),  
the entropy ofy when the distribution ofy and the previous guess are known 
-Hy (y), the entropy o fy  when the distribution ofy,  the previous guess, 
and the previous occurrences are known -Hxy(y), the entropy ofy  when 
the distribution ofy and the previous occurrence are known -H, ( .y ) ,  and 
the analogues of each of the last three for the two preceding trials, instead 
of just one. These data are summarized : 

H(y) . . . . . . . . . . . .  
Hy(y) ........... 
H,(y) . . . . . . . . . . . .  
Hxy ( y) . . . . . . . . . . .  
Hy,y (y) . . . . . . . . . .  
H,, (y) . . . . . . . . . .  
Hxy, xy ( y) . . . . . . . . .  

Series 
1 2 3 4 

I t  is clear that the best prediction of the subject's guess, i.e., the lowest 
entropy, is obtained when both his guesses and the actual occurrences on 
the two preceding trials are known, but a knowledge of his guess and the 
actual occurrence on the single preceding trial yields a prediction which is 
nearly as good, and knowledge of just the occurrence on the two preceding 
trials is only slightly worse. I t  thus follows that a subject responded not only 
to the actual events which occurred but also to his predictions about them. 
This can be made quite apparent by computing the probability of a guess 
of H when on the preceding trial a correct guess of H was made. For series 
one this conditional probability is about 0.5, but for the other three series 
it rises over trials and from trial 100 on it remains approximately constant 
with a value of 0.9. When the probability of an H guess following two 
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successive correct H guesses is plotted, the curves rise more rapidly, and 
even in series one there is a rise from 0.5 to about 0.75. 

"We conclude from our evidence that Ss do not, in fact, perceive the 
probability rules by which the series of events was generated. They do 
perceive, instead, those short sequences of events which precede each predic- 
tion, which can be discriminated from other possible sequences, and which 
are found to provide some information about the future behavior of the 
symbol series. There are several interesting conclusions which we can make 
about the way in which Ss perceive these previous events. 

"1. All combinations of possible previous events were not discriminated 
with equal ease. Some previous events, especially homogeneous runs of the 
same symbol, were more easily discriminated and consistently responded to 
than were others. 

"2. The previous events to which our Ss responded on each trial included 
more than just the symbols which had been appearing. They included also 
the previous predictions of Ss and the degree of correspondence between 
their predictions and the symbols which appeared on previous trials. 

"3. There was considerable agreement among our Ss as to when a partic- 
ular symbol should be predicted. They tended to respond to some similar 
or identical previous events in the same way, no matter which series they 
were predicting.. ." (Hake and Hyman [1953], p. 72). 

Bennett, Fitts, and Noble [1954] report an experiment similar to, but 
more complicated than Hake and Hyman's. The general structure was the 
same except that there were five symbols - in this case lights - rather than 
two to predict. Throughout the experiment the probabilities of the several 
symbols were held constant, but the digram and trigram frequencies were 
varied. First, they used one group of subjects to obtain information about 
sequential guessing habits, which the Hake and Hyman experiment (among 
others) indicated. The stimulus series consisted of independent selections; 
however, the subjects' response patterns differed both from independence 
and from the objective probabilities of the symbols. These data were used 
to generate conditional probabilities in the stimuli for the succeeding ex- 
periments - one sequence, called the concordant one, had sequential 
dependencies compatible with the observed guessing habits; the other, the 
discordant one, was designed to be incompatible with those habits. Using 
different subjects, learning was observed when better than chance behavior 
was possible if digrams were taken into account but not ifonly trigrams were 
considered. I t  was found that considerable learning did occur in 250 trials 
with the digrams, and that although there was some initial difference 
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between the concordant and discordant passages, it was not sustained. 
Using 500 trials and the trigrams, no learning was apparent. However, 
behavior for the two types of passages was sharply different: the concordant 
one elicited a larger number of correct predictions. The last experiment was 
repeated but extended to 1000 trials and the statistical structure of the pas- 
sages was explained to the subjects. The differences between the two groups 
were markedly reduced and there seemed to be some slight indication of 
learning in the last 250 trials. 

The authors point out that one must not conclude from these data that 
trigrams cannot be learned. With five symbols there are only 25 digrams 
as compared with 125 trigrams, which is a factor of 5. It is known from 
other studies that the number of trials required for learning goes up some- 
what more rapidly than linearly with the number of stimuli. Furthermore, 
the four-second interval between trials during which the subject resporided 
tends to prevent natural groupings such as are found in language, so the 
trigrams cannot easily be dealt with as a whole. "One implication of this 
line of reasoning, which may have important implications for skill learning, 
is that when sequences (of stimuli or movements) of a statistical nature have 
to be learned, it may be very important to give knowledge of results in such 
a way that Ss can observe entire sequences of events." ([1954], p. 31 1). 

THE SUBJECT OF THIS chapter is closely related to the first part of Chapter 13. 
The main emphasis of that Chapter was on the effects that inter-symbol 
dependencies have on immediate recall, whereas here we shall examine the 
effects of message length and the bits per symbol on immediate recall when 
there are no dependencies among symbols. Pollack [1952b] prepared mes- 
sages of from 4 to 24 symbols from sets of 2,4,8,16, and 30 equi-probable 
Latin consonants and numerals. These were read in a uniform manner to 
subjects who were told in advance both the set of symbols and the message 
length. They were required to reproduce them as accurately as possible. 
When an error was made, the subject was requested to guess as many times 
as was necessary to obtain the correct response. In one version of the ex- 
periment, reading rates were varied, but "Rate of presentation of stimulus 
materials (over the range considered) appears as a variable with little sig- 
nificance for immediate recall under the conditions considered here" ([I952 b] 
11, p. 13). 
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The data show that the error entropy per message unit increases both 
with message length and with an increase in bits per symbol. But, for a 
message of given length, the percentage of presented information which is 
lost is approximately independent of the number of bits per symbol. This 
percentage is, however, an increasing function of the length of the message. 
The error entropy increased in such a manner that the total information 
transmitted increased as the message length was increased from 4 to about 
10 symbols, it remained roughly constant in the range of 10 to 16 or 18 
symbols per message, and it decreased for longer messages. The curves are 
displaced upward with an increase in bits per symbol, but they are of re- 
markably similar shape. "The main generalization is that one cannot obtain 
simultaneously both minimum information loss and maximum information 
gain by simply varying either the length of a message or the number of 
possible alternatives per message-unit." "These relations stem from the fact 
that the percentage of the information presented that is lost or gained is 
independent of the number of alternatives per unit and is simply a function 
of the length of the message." ([I952 b], I, p. 12). 

I t  is useful to transform these data into plots of error entropy and infor- 
mation transmitted us total informational input. I t  is then found that for a 
fixed input, the error entropy is smaller and the information transmitted is 
larger the greater the number of bits per symbol. Thus, as Pollack points 
out, if one is interested in the optimal encoding characteristics for messages 
of fixed length, there are two answers depending upon whether a high error 
count is tolerable or not. If, however, the question is "What are the optimal 
encoding characteristics (for immediate recall) for messages of fixed infor- 
mational content ?" then the answer is unequivocal: short messages with a 
large number of alternatives for each message unit. 

In parts I11 and IV of his report, Pollack systematically studied the 
error behavior of his subjects. First, his data confirm the familiar finding of 
this type of experiment that the subjects are most uncertain about the middle 
portion of the message. For messages of length 7 ,  the relative uncertainty 
of the middle symbols is slightly higher than the end uncertainty, but it 
never exceeds .30. However, for messages of length 24, there is a broad 
plateau in the middle of the message which has a relative uncertainty of 
about .80. The broadness of this plateau Pollack attributed to the great 
sensitivity of the information measure to errors. He noted that the uncer- 
tainty curve alters its character with increasing message length: for short 
messages it is positively skewed and for long ones it is negatively skewed. 

In the fourth part of the report, he established the conclusion that there 
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is still information transmitted (as compared with chance responses) by the 
subjects on the second and third guesses following an incorrect response. 
"In general, the additional information recovered per message increases as 
the degree of analysis of the multiple response data becomes more ex- 
haustive. Stated otherwise, we recover more information from the distribu- 
tion of responses if we utilize the first response following the initial incorrect 
reproduction, still more if we utilize the first and second responses following 
the initial incorrect reproduction, and still more if we utilize the first 
through the third responses following the initial incorrect reproduction. The 
magnitude of the information increases as the number of alternatives per 
message-unit increases and is, roughly, independent of message-length (for 
messages greater than 7 units in length)" ([1952b], IV, p. 8). As would be 
expected, this effect is a decreasing one, but the decrease is less rapid with 
larger numbers of alternatives per message-unit. 

15. CONCEPT FORMATION 

CONSIDER THE EIGHT objects that are characterized by the three "dimen- 
sions" : triangles or circles, large or small, and black or red. One may attempt 
to convey to a subject a concept, such as red triangle, by showing him the 
objects one at a time and stating whether or not they are examples of the 
desired concept. A positive instance of the concept red triangle is "large red 
triangle," whereas "small black triangle" or "large red circle" are negative 
instances. Such experiments in concept learning have long been performed, 
and the conclusion has been drawn that negative instances are of little 
value in learning the correct concept. Hovland [1952], however, has raised 
a question about this conclusion - a question which stems from an informa- 
tion analysis of the situation. "What is not clear.. .is whether the ineffective- 
ness of negative instances is primarily attributable to their low value as 
carriers of information, or whether it is primarily due to the difficulty of 
assimilating the information which they do convey" ([1952], p. 461). 

Certainly it is clear from the above example that positive and negative 
instances do not transmit the same information, since only two positive 
ones are required to specify the concept, as compared with six negative. It 
is, of course, possible to design a situation where the negative instances 
carry as much or more information as the positive ones. For certain simple 
general situations, of which the above example is illustrative, Hovland has 
given formulae for the total number of positive and negative instances re- 
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quired to specify the concept. In an experimental paper, he and Weiss 
[1953] examined the effect of positive and negative instances when both 
the number of instances and the amount of information are held constant, 
and they conclude that even so the negative instances do not contribute as 
effectively to learning. "At the same time the data disprove the generali- 
zation often cited that negative instances have no value in the learning of 
concepts. Under appropriate conditions over half of the Ss were able to 
reach the correct solution solely on the basis of negative instances." ([1953], 
p. 181). 

Archer, Bourne, and Brown [I9551 establish that additional but irre- 
levant information of from 1 to 3 bits diminish the rate at  which a concept 
is achieved - the more irrelevant information, the slower the rate. 

Bendig [1953a] conducted an experiment which is closely related to 
concept formation, namely, the identification of a concept after the manner 
of the game "20 questions." In the experiment, four questions were em- 
ployed to isolate an animal topic. One experimenter asked the questions in 
fixed order of another who answered "yes" or "no" according to the topic. 
Following each question, the subjects were required to guess the concept. 
The information transmitted by each question was calculated, and theo- 
retically each should have conveyed one bit, but in actuality 0.83, 0.91, 
0.21, and 0.78 bits were transmitted. The central conclusion seemed to be 
that the third question was unfortunately phrased, since answers to it failed 
to convey much information. 

As A FINAL APPLICATION of information ideas, I shall consider a learning situ- 
ation where one class of objects - usually words - known as "responses" 
have been placed by the experimenter in one-to-one correspondence with 
another class of objects known as "stimuli." Initially, the subject knows 
nothing of the pairing and he can only guess at  the appropriate response to 
a given stimulus; if he is correct, he is told this, if not, he is told the correct 
response. After a number of repetitions, R, of the stimulus class, the subject 
begins to learn the correct pairing, and he obtains a certain number of 
correct bonds, say C, out of the total of N. The function C(R) is known as 
his "learning curve" for the paired associates. Several theories, and formu- 
lae, for this learning phenomenon have been put forth and are summarized 
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by Rogers [I9521 in a thesis in which he introduces a new learning theory 
based in part on information theory. 

He makes two central assumptions. First, he supposes that the uncertain- 
ty which a subject entertains about the stimulus class after R repetitions of 
the stimulus class is a function of R alone. In particular, he supposes that it 
is constant - UCk - for the first b repetitions, where b is a "set" parameter 
which tells when the learning begins, and that from b on it is a linear 
function of R, i.e., 

Uk = Uck-a (R-b), for R >  - b .  

Second, let B be the total number of bonds which the subject knows 
after R repetitions. Rogers shows this is one less than the expected value of 
the observable C. Let k be a stimulus not among the B that are known, and 
let i be any response which is not associated with one of the B known 
stimuli. Then he supposes that the probability that i is the response when k 
is given is 1/(N-B). In  other words, the subject is assumed to distribute 
his response choices without preference over all the available response ele- 
ments. 

From this second assumption, it is not difficult to obtain an expression 
for the uncertainty in terms of 3V and B. Equating this to the assumed ex- 
pression in terms of R gives an equation between B and R, and so between 
C and R. This may be solved for C: 

(3V-1){1-exp[-6a(R-b)]) + l , f o r  R> b, 
f o r  R <  b 

where 6 = log,e. I t  has long been noted that many learning data are ap- 
proximately fit by such an exponential learning curve, though in general 
this has been an empirical observation which was not deduced from other 
assumptions. 

T o  test the merits of this theory, Rogers drew certain conclusions from 
it which could be confronted by data. These conclusions were sustained by 
his data. Three related experiments were performed. 1) Correlated Structure. 
Stimuli - playing cards having two easily recognized dimensions, suits and 
denominations - were associated with nonsense syllables of the form conso- 
nant-vowel-consonant in a correlated manner. The first letter always corre- 
sponded to the denomination and the last to the suit. 2) Unstructured. 
Pictures of diverse household objects were paired in an arbitrary manner 
with nonsense syllables. 3) Uncorrelated Structured. The same materials as 
in 1 were used (so both the stimulus class and the response class were 
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structured) but there was no systematic relation in the pairing between the 
stimulus class and the response class. He then examined what two classical 
theories - Gestalt and the transfer theory of meaning - and what his own 
information theory of learning predict as to the learning rates in these three 
cases. Gestalt theory, according to his interpretation, ranks them 1, 3, 2 in 
order of increasing difficulty, transfer theory gives an ordering of 1, 2, 3, 
while information theory predicts that 1 and 2 should be equally easy and 
3 more difficult. His data are consistent with only the last prediction. 

Attempts to fit the learning curve to the data were for the most part 
successful, although one can note a consistent 'S' character to the data, 
which, of course, the exponential does not possess. He points out that if the 
linear assumption were replaced by an appropriate non-linear one, one 
could easily produce a learning curve with an 'S' shape - or, I might add, 
practically any other shape, for that matter. 

APPENDIX 

T H E  CONTINUOUS THEORY 

MUCH COMMUNICATION can best be thought of as the transmission of a con- 
tinuous signal and not as a sequence of temporally ordered selections from 
a finite set of possible elements. For the most part, as we have seen, the 
continuous theory has been of little importance in behavioral applications, 
though it is of considerable importance in electrical ones. I shall, therefore, 
briefly sketch the theory. This presentation follows Shannon's [I9481 
closely. 

The Continuous Source. A source is said to be continuous if, in effect, it 
makes but one selection from a continuum of elements; specifically, if it 
chooses one number from the set of all real numbers. I shall suppose that this 
selection is characterized by a probability density p (x) over the real numbers 

03 

x. Since p is a density, Sp(x)dx = 1 and furthermore for any c > 0 ,  no 

matter how small, one can find finite a and b such that 1 - c < \ p (x) d x l  1. 
a 

Now, for such a and b we may divide the interval from a to b into n equal 
intervals, and we can treat each of the intervals as an element from a finite 

%f+l 

set, with probability \p(x)dx of being selected. All the continuum not 
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b 

in a to b is an ( n +  I)" element with probability 1 - Sp  (x)  dx .  Thus we have 
a 

approximated the continuous source by a discrete one and for each n we 
can compute a corresponding entropy Hn.  As we let n approach infinity, 
the approximation is better and better, but unfortunately H,, also approaches 
infinity. This, of course, is reasonable considering the basis of the discrete 
entropy concept, but that does not make the approach any more satis- 
factory as a way to compare continuous sources. 

In such situations very often the difference between the quantity desired 
and another quantity, which tends to infinity with increasing n, will itself 
tend to a finite limit. If this second quantity can be chosen to be the same 
for all sources, then the resulting differences afford a perfectly acceptable 
comparison for continuous sources. As before, we choose a and b and we 
divide the interval from a to b into n equal intervals. Each of these intervals 
is of length Ax = (b -a) In. Whereas before we tried to generalize 

and got into trouble, we now examine the entropy of the finite approxi- 
mation minus the most that approximation might have been, i.e. 

log, A x - yp ( x i )  A  x  log, [ p ( x i )  A  x] . 

I t  is not difficult to show that 

lim lim log, A x -= (xi) AX log, [ P  (xi) A  X I  
b+co n+co 1 i = l  
a+-03 Ax-0 

This quantity, which is denoted by H ( x ) ,  is called the entropy of a continuous 
source. I t  is well to keep in mind that the continuous entropy is not an 
exact analogue of the discrete entropy, and so certain differences in proper- 
ties may be anticipated. The surprising thing is how many of the results are 
independent of the base-line from which the discrete entropy is measured. 
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If there are two arguments x andy  to the distribution (as in the case of 
noise), the joint and conditional entropies are defined by 

where 

Many of the theorems of the discrete case carry over - usually quite 
directly - to the continuous case, but in addition there are certain new 
theorems which rest heavily on the existence of a coordinate system. I shall 
list some of the more important ones, of which the first is familiar and the 
other four are new. 

1. H ( ~ , Y )  l H ( x ) + H ( y ) ,  
H(x,y) = H(x) + H x  (3) = H ( y )  +H, (x), 
H x  (Y) l H(Y) - 

2. If@ (x) = 0 except on an interval of length v, then H(x) is a maximum 
( = log, v) when p (x) = 1 /v for x in the interval. 

3. Of the class of all continuous one-dimensional distributions with 
variance u2, the normal, or Gaussian, is the one having maximum entropy. 
The value of the maximum is log, (2 ne)'" o . 

4. Of the class of all continuous one-dimensional distributions with 
mean a > 0 and with p (x) = 0 for x< 0, the exponential is the one having 
maximum entropy. The value of the maximum is log,ea. 

5. Unlike the discrete case, in which entropy measures the randomness 
in an absolute way, the continuous entropy is a measure which is relative 
to a coordinate system. If the coordinate system is changed, the entropy is 
changed. This is not serious, however, since both the channel capacity and 
the rate of information transfer depend upon the difference between two 
entropies, and so they are invariant under coordinate transformation. Reich 
[I951 a] states that he has shown the definition of information rate used by 
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Shannon is the only one of a broad class of possible definitions which is 
invariant under coordinate transformation. 

The Channel Capacity. As in the discrete noisy case, the channel capacity 
C is defined to be the maximum rate of transmission R = H(x) -H, ( x )  

obtained by considering all possible distributions. This is easily shown to be 

One particularly important case in applications is that in which the noise 
is simply added to the signal and is independent of it. In  that case the 
entropy of the noise can be computed. If we denote it by H(n), then 

Of course, if there are restraints on the class of admissible signals, the 
maximization is taken subject to these restraints. 

A simple, but very important, electrical application of the above theo- 
rem is to the case of a channel which has a bandwidth of W cycles per 
second (e.g., a telephone which will pass from 500 to 3,500 cycles per 
second has a bandwidth of 3,000 cycles per second), in which the transmitter 
has an average power output o f P  and the noise is white thermal noise (i.e., 
all frequencies are equally represented) of average power N. In  this case 
the channel capacity in bits per second is 

C =  Wlog, 1 + -  i 3 
Rate of Transmission. "In the case of a discrete source of information 
we were able to determine a definite rate of generating information, namely 
the entropy of the underlying stochastic process. With a continuous source 
the situation is considerably more involved. In the first place a continuously 
variable quantity can assume an infinite number of values and requires, 
therefore, an infinite number of binary digits for exact specification. This 
means that to transmit the output of a continuous source with exact recovery 
at the receiving point requires, in general, a channel of infinite capacity (in 
bits per second). Since, ordinarily, channels have a certain amount of noise, 
and therefore a finite capacity, exact transmission is impossible. 

"This, however, evades the real issue. Practically, we are not interested 
in exact transmission when we have a continuous source, but only in trans- 
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mission to within a certain tolerance. The question is, can we assign a 
definite rate to a continuous source when we require only a certain fidelity 
of recovery, measured in a suitable way. Of course, as the fidelity require- 
ments are increased the rate will increase. It will be shown that we can, in 
very general cases, define a rate, having the property that it is possible, by 
properly encoding the information, to transmit it over a channel whose 
capacity is equal to the rate in question, and satisfy the fidelity requirements. 
A channel ofsmaller capacity is insufficient." ([Shannon and Weaver], 1949, 
p. 74). 

The noise character of the whole system is, as before, given by a distri- 
bution p (x, y)  which states the probability density that the signal y is received 
when x is sent. The fidelity of the system is, roughly, an evalution of how 
different y is on the average from x. It is assumed to be a function of the 
noise, that is, if it is measured by a real number it can be written in the form 
v[p(x,y)]. Under quite broad conditions, which I shall not attempt to state 
here (see [Shannon], 1948), it can be shown that v can be represented as 

The real-valued function p (x,y) is essentially a measure of the difference 
between x and y and in computing the fidelity it is weighted according to 
the probability density of the joint occurrence of x and y. It may be illumi- 
nating to consider two very common electrical criteria of fidelity. The first 
is the root-mean-square criterion, namely, 

and the second is the absolute error criterion, namely, 

Now, the rate R of generating information corresponding to a given 
quality of reproduction (fidelity) v is defined to be the minimum R which is 
obtained by varying p (ylx) with v held constant, i.e., 
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subject to 

With this definition, and with that of channel capacity given earlier, it can 
be shown that if a source has a rate R  for a valuation of fidelity v, then it is 
possible to encode the output of the source and to transmit it over a channel 
with capacity C  in such a manner that the fidelity is arbitrarily near v if 
and only if R g C .  This is the fundamental theorem for the transmission of 
information in the continuous case. 
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